Kim Dong-Yun, Jang Bum-Sup, Kim Eunji, Chie Eui Kyu
Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.
Department of Radiation Oncology, Chung-Ang University Hospital, Seoul, Korea.
Cancer Res Treat. 2025 Jan;57(1):186-197. doi: 10.4143/crt.2024.333. Epub 2024 Aug 2.
Selecting the better techniques to harbor optimal motion management, either a stereotactic linear accelerator delivery using TrueBeam (TBX) or magnetic resonance-guided gated delivery using MRIdian (MRG), is time-consuming and costly. To address this challenge, we aimed to develop a decision-supporting algorithm based on a combination of deep learning-generated dose distributions and clinical data.
We retrospectively analyzed 65 patients with liver or pancreatic cancer who underwent both TBX and MRG simulations and planning process. We trained three-dimensional U-Net deep learning models to predict dose distributions and generated dose volume histograms (DVHs) for each system. We integrated predicted DVH metrics into a Bayesian network (BN) model incorporating clinical data.
The MRG prediction model outperformed the TBX model, demonstrating statistically significant superiorities in predicting normalized dose to the planning target volume (PTV) and liver. We developed a final BN prediction model integrating the predictive DVH metrics with patient factors like age, PTV size, and tumor location. This BN model an area under the receiver operating characteristic curve index of 83.56%. The decision tree derived from the BN model showed that the tumor location (abutting vs. apart of PTV to hollow viscus organs) was the most important factor to determine TBX or MRG. It provided a potential framework for selecting the optimal radiation therapy (RT) system based on individual patient characteristics.
We demonstrated a decision-supporting algorithm for selecting optimal RT plans in upper gastrointestinal cancers, incorporating both deep learning-based dose prediction and BN-based treatment selection. This approach might streamline the decision-making process, saving resources and improving treatment outcomes for patients undergoing RT.
选择更好的技术以实现最佳的运动管理,无论是使用TrueBeam(TBX)的立体定向直线加速器放疗,还是使用MRIdian(MRG)的磁共振引导门控放疗,都既耗时又昂贵。为应对这一挑战,我们旨在开发一种基于深度学习生成的剂量分布和临床数据相结合的决策支持算法。
我们回顾性分析了65例接受TBX和MRG模拟及计划制定过程的肝癌或胰腺癌患者。我们训练了三维U-Net深度学习模型来预测剂量分布,并为每个系统生成剂量体积直方图(DVH)。我们将预测的DVH指标整合到一个纳入临床数据的贝叶斯网络(BN)模型中。
MRG预测模型优于TBX模型,在预测计划靶体积(PTV)和肝脏的归一化剂量方面显示出统计学上的显著优势。我们开发了一个最终的BN预测模型,将预测的DVH指标与年龄、PTV大小和肿瘤位置等患者因素相结合。该BN模型的受试者操作特征曲线下面积指数为83.56%。从BN模型导出的决策树表明,肿瘤位置(PTV与中空脏器相邻或不相邻)是决定使用TBX还是MRG的最重要因素。它为基于个体患者特征选择最佳放疗(RT)系统提供了一个潜在框架。
我们展示了一种用于选择上消化道癌最佳RT计划的决策支持算法,该算法结合了基于深度学习的剂量预测和基于BN的治疗选择。这种方法可能会简化决策过程,为接受RT的患者节省资源并改善治疗效果。