文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度迁移学习的食管癌分类模型的原子搜索优化。

Atom Search Optimization with the Deep Transfer Learning-Driven Esophageal Cancer Classification Model.

机构信息

Applied College, Taibah University, Medina, Saudi Arabia.

Department of Medical Laboratory Technology (MLT), Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Sep 16;2022:4629178. doi: 10.1155/2022/4629178. eCollection 2022.


DOI:10.1155/2022/4629178
PMID:36156959
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9507698/
Abstract

Esophageal cancer (EC) is a commonly occurring malignant tumor that significantly affects human health. Earlier recognition and classification of EC or premalignant lesions can result in highly effective targeted intervention. Accurate detection and classification of distinct stages of EC provide effective precision therapy planning and improve the 5-year survival rate. Automated recognition of EC can aid physicians in improving diagnostic performance and accuracy. However, the classification of EC is challenging due to identical endoscopic features, like mucosal erosion, hyperemia, and roughness. The recent developments of deep learning (DL) and computer-aided diagnosis (CAD) models have been useful for designing accurate EC classification models. In this aspect, this study develops an atom search optimization with a deep transfer learning-driven EC classification (ASODTL-ECC) model. The presented ASODTL-ECC model mainly examines the medical images for the existence of EC in a timely and accurate manner. To do so, the presented ASODTL-ECC model employs Gaussian filtering (GF) as a preprocessing stage to enhance image quality. In addition, the deep convolution neural network- (DCNN-) based residual network (ResNet) model is applied as a feature extraction approach. Besides, ASO with an extreme learning machine (ELM) model is utilized for identifying the presence of EC, showing the novelty of the work. The performance of the ASODTL-ECC model is assessed and compared with existing models under several medical images. The experimental results pointed out the improved performance of the ASODTL-ECC model over recent approaches.

摘要

食管癌(EC)是一种常见的恶性肿瘤,严重影响人类健康。早期识别和分类 EC 或癌前病变可以实现高效的靶向干预。准确检测和分类 EC 的不同阶段可为有效精准治疗计划提供依据,并提高 5 年生存率。自动识别 EC 可以帮助医生提高诊断性能和准确性。然而,EC 的分类具有挑战性,因为其具有相同的内镜特征,如黏膜糜烂、充血和粗糙。深度学习(DL)和计算机辅助诊断(CAD)模型的最新发展对于设计准确的 EC 分类模型非常有用。在这方面,本研究开发了一种基于原子搜索优化和深度迁移学习的 EC 分类(ASODTL-ECC)模型。所提出的 ASODTL-ECC 模型主要用于及时、准确地检查医学图像中是否存在 EC。为此,所提出的 ASODTL-ECC 模型采用高斯滤波(GF)作为预处理阶段来增强图像质量。此外,还应用了基于深度卷积神经网络(DCNN)的残差网络(ResNet)模型作为特征提取方法。此外,还利用具有极端学习机(ELM)模型的 ASO 来识别 EC 的存在,展示了工作的新颖性。在几种医学图像下评估和比较了 ASODTL-ECC 模型的性能。实验结果表明,ASODTL-ECC 模型的性能优于最近的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/4329e0f6f98e/CIN2022-4629178.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/2219c03eecc7/CIN2022-4629178.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/466a4902b86f/CIN2022-4629178.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/d7350c62eccd/CIN2022-4629178.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/8050bdc3ccdd/CIN2022-4629178.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/abe2e1ced1b1/CIN2022-4629178.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/3cc05ec3cd77/CIN2022-4629178.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/6e3f413435a0/CIN2022-4629178.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/f277a08efce4/CIN2022-4629178.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/9648f2e07515/CIN2022-4629178.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/f3a8192d2ea8/CIN2022-4629178.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/fa3da144e1c5/CIN2022-4629178.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/721a246eea66/CIN2022-4629178.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/c5219a819c16/CIN2022-4629178.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/bca2b691ecd6/CIN2022-4629178.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/4329e0f6f98e/CIN2022-4629178.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/2219c03eecc7/CIN2022-4629178.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/466a4902b86f/CIN2022-4629178.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/d7350c62eccd/CIN2022-4629178.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/8050bdc3ccdd/CIN2022-4629178.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/abe2e1ced1b1/CIN2022-4629178.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/3cc05ec3cd77/CIN2022-4629178.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/6e3f413435a0/CIN2022-4629178.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/f277a08efce4/CIN2022-4629178.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/9648f2e07515/CIN2022-4629178.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/f3a8192d2ea8/CIN2022-4629178.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/fa3da144e1c5/CIN2022-4629178.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/721a246eea66/CIN2022-4629178.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/c5219a819c16/CIN2022-4629178.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/bca2b691ecd6/CIN2022-4629178.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e933/9507698/4329e0f6f98e/CIN2022-4629178.alg.001.jpg

相似文献

[1]
Atom Search Optimization with the Deep Transfer Learning-Driven Esophageal Cancer Classification Model.

Comput Intell Neurosci. 2022

[2]
Ensembled CNN with artificial bee colony optimization method for esophageal cancer stage classification using SVM classifier.

J Xray Sci Technol. 2024

[3]
Towards laryngeal cancer diagnosis using Dandelion Optimizer Algorithm with ensemble learning on biomedical throat region images.

Sci Rep. 2024-8-24

[4]
Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification.

Comput Intell Neurosci. 2022

[5]
Machine learning applications for early detection of esophageal cancer: a systematic review.

BMC Med Inform Decis Mak. 2023-7-17

[6]
Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.

Comput Methods Programs Biomed. 2020-7

[7]
Deep Transfer Learning-Based Breast Cancer Detection and Classification Model Using Photoacoustic Multimodal Images.

Biomed Res Int. 2022

[8]
An Ensemble of Deep Learning Enabled Brain Stroke Classification Model in Magnetic Resonance Images.

J Healthc Eng. 2022

[9]
Optimal Deep Transfer Learning-Based Human-Centric Biomedical Diagnosis for Acute Lymphoblastic Leukemia Detection.

Comput Intell Neurosci. 2022

[10]
Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network.

J Digit Imaging. 2019-8

引用本文的文献

[1]
An endoscopic ultrasound-based interpretable deep learning model and nomogram for distinguishing pancreatic neuroendocrine tumors from pancreatic cancer.

Sci Rep. 2025-1-27

[2]
Retracted: Atom Search Optimization with the Deep Transfer Learning-Driven Esophageal Cancer Classification Model.

Comput Intell Neurosci. 2023-8-9

[3]
Machine learning applications for early detection of esophageal cancer: a systematic review.

BMC Med Inform Decis Mak. 2023-7-17

本文引用的文献

[1]
Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification on Ultrasound Images.

Biology (Basel). 2022-3-14

[2]
A Fast Two-Stage Bilateral Filter Using Constant Time (1) Histogram Generation.

Sensors (Basel). 2022-1-25

[3]
Multi-Task Model for Esophageal Lesion Analysis Using Endoscopic Images: Classification with Image Retrieval and Segmentation with Attention.

Sensors (Basel). 2021-12-31

[4]
Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer.

J Thorac Dis. 2021-11

[5]
Gastrointestinal Tract Disease Classification from Wireless Endoscopy Images Using Pretrained Deep Learning Model.

Comput Math Methods Med. 2021

[6]
Prediction Model of Anastomotic Leakage Among Esophageal Cancer Patients After Receiving an Esophagectomy: Machine Learning Approach.

JMIR Med Inform. 2021-7-27

[7]
A prediction model for degree of differentiation for resectable locally advanced esophageal squamous cell carcinoma based on CT images using radiomics and machine-learning.

Br J Radiol. 2021-8-1

[8]
A different overview of staging PET/CT images in patients with esophageal cancer: the role of textural analysis with machine learning methods.

Ann Nucl Med. 2021-9

[9]
Machine Learning and Radiomics Applications in Esophageal Cancers Using Non-Invasive Imaging Methods-A Critical Review of Literature.

Cancers (Basel). 2021-5-19

[10]
Esophageal cancer detection based on classification of gastrointestinal CT images using improved Faster RCNN.

Comput Methods Programs Biomed. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索