文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米陶瓷荧光粉的混合分层异质结构作为多重成像剂和活癌细胞迁移的示踪剂。

Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation.

机构信息

Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain.

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.

出版信息

ACS Appl Bio Mater. 2021 May 17;4(5):4105-4118. doi: 10.1021/acsabm.0c01417. Epub 2021 Mar 10.


DOI:10.1021/acsabm.0c01417
PMID:34056563
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8155200/
Abstract

Existing fluorescent labels used in life sciences are based on organic compounds with limited lifetime or on quantum dots which are either expensive or toxic and have low kinetic stability in biological environments. To address these challenges, luminescent nanomaterials have been conceived as hierarchical, core-shell structures with spherical morphology and highly controlled dimensions. These tailor-made nanophosphors incorporate Ln:YVO nanoparticles (Ln = Eu(III) and Er(III)) as 50 nm cores and display intense and narrow emission maxima centered at ∼565 nm. These cores can be encapsulated in silica shells with highly controlled dimensions as well as functionalized with chitosan or PEG5000 to reduce nonspecific interactions with biomolecules in living cells. Confocal fluorescence microscopy in living prostate cancer cells confirmed the potential of these platforms to overcome the disadvantages of commercial fluorophores and their feasibility as labels for multiplexing, biosensing, and imaging in life science assays.

摘要

现有的生命科学用荧光标记物基于有机化合物,其寿命有限,或者基于量子点,量子点要么昂贵,要么有毒,在生物环境中的动力学稳定性低。为了解决这些挑战,人们设计了具有球形形态和高度可控尺寸的层状核壳结构的发光纳米材料。这些定制的纳米荧光粉将 Ln:YVO 纳米颗粒(Ln = Eu(III) 和 Er(III))作为 50nm 核,并显示出强烈而狭窄的发射峰,中心位于 ∼565nm。这些核可以被包裹在具有高度可控尺寸的二氧化硅壳中,并通过壳聚糖或 PEG5000 进行功能化,以减少与活细胞中生物分子的非特异性相互作用。在活前列腺癌细胞中的共聚焦荧光显微镜证实了这些平台克服商业荧光团缺点的潜力,以及它们作为用于多重分析、生物传感和成像的标记物的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/1ab7d8580422/mt0c01417_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/1f96388b9a93/mt0c01417_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/f98352f08d09/mt0c01417_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/48a27ca61948/mt0c01417_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/9bba42c3cf8b/mt0c01417_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/a7e3f36d49b0/mt0c01417_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/655b1aa91c44/mt0c01417_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/5712599781b5/mt0c01417_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/1ab7d8580422/mt0c01417_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/1f96388b9a93/mt0c01417_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/f98352f08d09/mt0c01417_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/48a27ca61948/mt0c01417_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/9bba42c3cf8b/mt0c01417_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/a7e3f36d49b0/mt0c01417_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/655b1aa91c44/mt0c01417_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/5712599781b5/mt0c01417_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e43/8155200/1ab7d8580422/mt0c01417_0007.jpg

相似文献

[1]
Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation.

ACS Appl Bio Mater. 2021-5-17

[2]
Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals.

Langmuir. 2009-10-20

[3]
Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals.

Biomaterials. 2008-3

[4]
Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles.

J Am Chem Soc. 2010-3-10

[5]
Molten salt synthesis and luminescent properties of YVO4:Ln (Ln = Eu3+, Dy3+) nanophosphors.

J Nanosci Nanotechnol. 2012-1

[6]
Wrapped stellate silica nanocomposites as biocompatible luminescent nanoplatforms assessed in vivo.

J Colloid Interface Sci. 2019-1-23

[7]
High-resolution light microscopy using luminescent nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010

[8]
Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles.

J Biomed Mater Res A. 2008-3-15

[9]
Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging.

Mater Sci Eng C Mater Biol Appl. 2020-6

[10]
Inorganic lanthanide nanophosphors in biotechnology.

J Nanosci Nanotechnol. 2008-3

引用本文的文献

[1]
Rare Earths-Doped and Ceria-Coated Strontium Aluminate PlateletsVersatile Luminescent Platforms for Correlated Lifetime Imaging by Multiphoton FLIM and PLIM.

ACS Omega. 2025-4-29

[2]
Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors.

ACS Bio Med Chem Au. 2023-8-8

[3]
Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers.

Front Chem. 2022-4-12

[4]
Biocompatible Probes Based on Rare-Earth Doped Strontium Aluminates with Long-Lasting Phosphorescent Properties for In Vitro Optical IMAGING.

Int J Mol Sci. 2022-3-21

本文引用的文献

[1]
Quantification by Luminescence Tracking of Red Emissive Gold Nanoparticles in Cells.

JACS Au. 2021-2-22

[2]
Nanomaterials to Resolve Atherosclerosis.

ACS Biomater Sci Eng. 2020-7-13

[3]
Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy.

ACS Biomater Sci Eng. 2020-9-14

[4]
Tailoring the Interfacial Interactions of van der Waals 1T-MoS/C Heterostructures for High-Performance Hydrogen Evolution Reaction Electrocatalysis.

J Am Chem Soc. 2020-10-21

[5]
Explorations into the Effect of meso-Substituents in Tricarbocyanine Dyes: A Path to Diverse Biomolecular Probes and Materials.

Angew Chem Int Ed Engl. 2021-3-15

[6]
Tumor Microenvironment Stimuli-Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon-Dot-Cu Nanoassemblies.

Angew Chem Int Ed Engl. 2020-11-16

[7]
A framework for designing delivery systems.

Nat Nanotechnol. 2020-10

[8]
Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health.

Nat Nanotechnol. 2021-4

[9]
Quantitative Cooperative Binding Model for Intrinsically Disordered Proteins Interacting with Nanomaterials.

J Am Chem Soc. 2020-6-17

[10]
Influence of the Spatial Distribution of Cationic Functional Groups at Nanoparticle Surfaces on Bacterial Viability and Membrane Interactions.

J Am Chem Soc. 2020-6-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索