Ji Yunseong, Li Yu-Meng, Seo Jin Gwan, Jang Tae-Su, Knowles Jonathan Campbell, Song Sung Ho, Lee Jung-Hwan
Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea.
Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea.
Nanomaterials (Basel). 2021 May 29;11(6):1446. doi: 10.3390/nano11061446.
Stem cell therapy is one of the novel and prospective fields. The ability of stem cells to differentiate into different lineages makes them attractive candidates for several therapies. It is essential to understand the cell fate, distribution, and function of transplanted cells in the local microenvironment before their applications. Therefore, it is necessary to develop an accurate and reliable labeling method of stem cells for imaging techniques to track their translocation after transplantation. The graphitic quantum dots (GQDs) are selected among various stem cell labeling and tracking strategies which have high photoluminescence ability, photostability, relatively low cytotoxicity, tunable surface functional groups, and delivering capacity. Since GQDs interact easily with the cell and interfere with cell behavior through surface functional groups, an appropriate surface modification needs to be considered to get close to the ideal labeling nanoprobes. In this study, polyethylene glycol (PEG) is used to improve biocompatibility while simultaneously maintaining the photoluminescent potentials of GQDs. The biochemically inert PEG successfully covered the surface of GQDs. The PEG-GQDs composites show adequate bioimaging capabilities when internalized into neural stem/progenitor cells (NSPCs). Furthermore, the bio-inertness of the PEG-GQDs is confirmed. Herein, we introduce the PEG-GQDs as a valuable tool for stem cell labeling and tracking for biomedical therapies in the field of neural regeneration.
干细胞治疗是新兴且具有前景的领域之一。干细胞能够分化为不同谱系的能力使其成为多种治疗方法的有吸引力的候选对象。在应用干细胞之前,了解移植细胞在局部微环境中的细胞命运、分布和功能至关重要。因此,有必要开发一种准确可靠的干细胞标记方法,用于成像技术以追踪其移植后的移位情况。在各种具有高光致发光能力、光稳定性、相对低细胞毒性、可调节表面官能团和递送能力的干细胞标记和追踪策略中,选择了石墨量子点(GQDs)。由于GQDs容易与细胞相互作用并通过表面官能团干扰细胞行为,因此需要考虑进行适当的表面修饰以接近理想的标记纳米探针。在本研究中,聚乙二醇(PEG)用于提高生物相容性,同时保持GQDs的光致发光潜力。具有生物化学惰性的PEG成功覆盖了GQDs的表面。当PEG-GQDs复合物内化到神经干细胞/祖细胞(NSPCs)中时,表现出足够的生物成像能力。此外,PEG-GQDs的生物惰性得到了证实。在此,我们将PEG-GQDs作为一种有价值的工具,用于神经再生领域生物医学治疗中的干细胞标记和追踪。