Suppr超能文献

电纺膜的拓扑结构调节免疫反应、血管生成和骨再生。

Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration.

机构信息

The Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China.

State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

出版信息

Acta Biomater. 2021 Jul 15;129:148-158. doi: 10.1016/j.actbio.2021.05.042. Epub 2021 May 31.

Abstract

The fate of biomaterials is orchestrated by biocompatibility and bioregulation characteristics, reported to be closely related to topographical structures. For the purpose to investigate the topography of fibrous membranes on the guided bone regeneration performance, we successfully fabricated poly (lactate-co-glycolate)/fish collagen/nano-hydroxyapatite (PFCH) fibrous membranes with random, aligned and latticed topography by electrospinning. The physical, chemical and biological properties of the three topographical PFCH membranes were systematically investigated by in vitro and in vivo experiments. The subcutaneous implantation of C57BL6 mice showed an acceptable mild foreign body reaction of all three topological membranes. Interestingly, the latticed PFCH membrane exhibited superior abilities to recruit macrophage/monocyte and induce angiogenesis. We further investigated the osteogenesis of the three topographical PFCH membranes via the critical-size calvarial bone defect model of rats and mice and the results suggested that latticed PFCH membrane manifested promising performance to promote angiogenesis through upregulation of the HIF-1α signaling pathway; thereby enhancing bone regeneration. Our research illustrated that the topological structure of fibrous membranes, as one of the characteristics of biomaterials, could regulate its biological functions, and the fibrous structure of latticed topography could serve as a favorable surface design of biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: In material-mediated regeneration medicine, the interaction between the biomaterial and the host is key to successful tissue regeneration. The micro-and nano-structure becomes one of the most critical physical clues for designing biomaterials. In this study, we fabricated three topological electrospun membranes (Random, Aligned and Latticed) to understand how topological structural clues mediate bone tissue regeneration. Interestingly, we found that the Latticed topographical PFCH membrane promotes macrophage recruitment, angiogenesis, and osteogenesis in vivo, indicating the fibrous structure of latticed topography could serve as a favorable surface design of biomaterials for bone regeneration.

摘要

生物材料的命运由其生物相容性和生物调节特性决定,据报道,这些特性与形貌结构密切相关。为了研究纤维膜的形貌对引导骨再生性能的影响,我们通过静电纺丝成功制备了具有随机、定向和格子形貌的聚(丙交酯-乙交酯/鱼胶原蛋白/纳米羟基磷灰石)(PFCH)纤维膜。通过体外和体内实验系统地研究了这三种具有形貌特征的 PFCH 膜的物理、化学和生物学性能。C57BL6 小鼠的皮下植入实验表明,这三种拓扑结构的膜均具有可接受的轻度异物反应。有趣的是,格子状 PFCH 膜表现出优越的募集巨噬细胞/单核细胞和诱导血管生成的能力。我们进一步通过大鼠和小鼠的临界尺寸颅骨骨缺损模型研究了这三种形貌 PFCH 膜的成骨作用,结果表明格子状 PFCH 膜通过上调 HIF-1α 信号通路表现出促进血管生成的良好性能,从而增强骨再生。我们的研究表明,纤维膜的形貌结构作为生物材料的特征之一,可以调节其生物学功能,格子状形貌的纤维结构可以作为促进骨再生的生物材料的有利表面设计。

意义陈述

在材料介导的再生医学中,生物材料与宿主之间的相互作用是组织成功再生的关键。微纳结构成为设计生物材料的最关键物理线索之一。在这项研究中,我们制备了三种拓扑结构的静电纺丝膜(随机、定向和格子),以了解形貌结构线索如何调节骨组织再生。有趣的是,我们发现格子状形貌的 PFCH 膜在体内促进巨噬细胞募集、血管生成和骨生成,表明格子状形貌的纤维结构可以作为促进骨再生的生物材料的有利表面设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验