文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

制备含薄荷提取物负载明胶纳米颗粒的聚氨酯/普朗尼克F127纳米纤维用于糖尿病伤口愈合:表征、体外和体内研究

Preparation of Polyurethane/Pluronic F127 Nanofibers Containing Peppermint Extract Loaded Gelatin Nanoparticles for Diabetic Wounds Healing: Characterization, In Vitro, and In Vivo Studies.

作者信息

Almasian Arash, Najafi Farhood, Eftekhari Mahdieh, Shams Ardekani Mohammad Reza, Sharifzadeh Mohammad, Khanavi Mahnaz

机构信息

Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.

出版信息

Evid Based Complement Alternat Med. 2021 May 15;2021:6646702. doi: 10.1155/2021/6646702. eCollection 2021.


DOI:10.1155/2021/6646702
PMID:34093721
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8140834/
Abstract

Diabetic ulcer is regarded as one of the most prevalent chronic diseases. The healing of these ulcers enhances with the use of herbal extracts containing wound dressings with high antibacterial property and creating a nano-sized controlled release system. In this study, new peppermint extract was incorporated in the polyurethane- (PU-) based nanofibers for diabetic wound healing. The peppermint extract was used as an herbal antimicrobial and anti-inflammatory agent. The absorption ability of the wound dressing was enhanced by addition of F127 pluronic into the polymer matrix. The release of the extract was optimized by crosslinking the extract with gelatin nanoparticles (CGN) and their eventual incorporation into the nanofibers. The release of the extract was also controlled through direct addition of the extract into the PU matrix. The results showed that the release of extract from nanofibers was continued during 144 hours. The prepared wound dressing had a maximum absorption of 410.65% and an antibacterial property of 99.9% against and bacteria. An in vivo study indicated on significant improving in wound healing after the use of the extract as an effective compound. On day 14, the average healing rate for samples covered by conventional gauze bandage, PU/F127, PU/F/15 (contained extract), and PU/F/15/10 (contained extract and CGN) prepared with different nanoparticle concentrations of 5 and 10 was 47.1 ± 0.2, 56.4 ± 0.4, 65.14 ± 0.2, and 90.55 ± 0.15%, respectively. Histopathological studies indicated that the wound treated with the extract containing nanofibers showed a considerable inflammation reduction at day 14. Additionally, this group showed more resemblance to normal skin with a thin epidermis presence of normal rete ridges and rejuvenation of skin appendages. Neovascularization and collagen deposition were higher in wounds treated with the extract containing nanofibrous wound dressing compared to the other groups.

摘要

糖尿病溃疡被认为是最常见的慢性疾病之一。使用含有具有高抗菌性能的伤口敷料并创建纳米级控释系统,可促进这些溃疡的愈合。在本研究中,将新的薄荷提取物掺入基于聚氨酯(PU)的纳米纤维中用于糖尿病伤口愈合。薄荷提取物用作草药抗菌和抗炎剂。通过将F127普朗尼克添加到聚合物基质中,增强了伤口敷料的吸收能力。通过将提取物与明胶纳米颗粒(CGN)交联并最终将其掺入纳米纤维中,优化了提取物的释放。提取物的释放也通过将提取物直接添加到PU基质中进行控制。结果表明,纳米纤维中提取物的释放在144小时内持续进行。制备的伤口敷料的最大吸收率为410.65%,对 和 细菌的抗菌性能为99.9%。一项体内研究表明,使用该提取物作为有效化合物后,伤口愈合有显著改善。在第14天,用不同纳米颗粒浓度5和10制备的传统纱布绷带、PU/F127、PU/F/15(含提取物)和PU/F/15/10(含提取物和CGN)覆盖的样品的平均愈合率分别为47.1±0.2、56.4±0.4、65.14±0.2和90.55±0.15%。组织病理学研究表明,用含提取物的纳米纤维处理的伤口在第14天炎症明显减轻。此外,该组与正常皮肤更相似,有薄表皮、正常 rete 嵴的存在和皮肤附属器的恢复活力。与其他组相比,用含提取物的纳米纤维伤口敷料处理的伤口中,新血管形成和胶原蛋白沉积更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/b10a05762900/ECAM2021-6646702.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/882b5a9d2ed2/ECAM2021-6646702.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/80f056e7fffb/ECAM2021-6646702.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/c6eea0ddc706/ECAM2021-6646702.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/5c0f112719ac/ECAM2021-6646702.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/0411d065722e/ECAM2021-6646702.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/5a12160b9edf/ECAM2021-6646702.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/52f5ad3ad646/ECAM2021-6646702.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/5116e7ce9067/ECAM2021-6646702.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/ab016a12ead6/ECAM2021-6646702.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/1b4373c7fb44/ECAM2021-6646702.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/4bacf949def1/ECAM2021-6646702.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/b10a05762900/ECAM2021-6646702.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/882b5a9d2ed2/ECAM2021-6646702.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/80f056e7fffb/ECAM2021-6646702.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/c6eea0ddc706/ECAM2021-6646702.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/5c0f112719ac/ECAM2021-6646702.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/0411d065722e/ECAM2021-6646702.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/5a12160b9edf/ECAM2021-6646702.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/52f5ad3ad646/ECAM2021-6646702.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/5116e7ce9067/ECAM2021-6646702.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/ab016a12ead6/ECAM2021-6646702.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/1b4373c7fb44/ECAM2021-6646702.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/4bacf949def1/ECAM2021-6646702.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf5/8140834/b10a05762900/ECAM2021-6646702.012.jpg

相似文献

[1]
Preparation of Polyurethane/Pluronic F127 Nanofibers Containing Peppermint Extract Loaded Gelatin Nanoparticles for Diabetic Wounds Healing: Characterization, In Vitro, and In Vivo Studies.

Evid Based Complement Alternat Med. 2021-5-15

[2]
Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies.

Mater Sci Eng C Mater Biol Appl. 2020-9

[3]
A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities.

Int J Biol Macromol. 2020-1-27

[4]
Enhanced wound-healing efficacy of electrospun mesoporous hydroxyapatite nanoparticle-loaded chitosan nanofiber developed using pluronic F127.

Int J Biol Macromol. 2023-6-15

[5]
PDDA/Honey Antibacterial Nanofiber Composites for Diabetic Wound-Healing: Preparation, Characterization, and In Vivo Studies.

Gels. 2023-2-22

[6]
Wound healing and antibacterial capability of electrospun polyurethane nanofibers incorporating and extracts.

J Biomater Sci Polym Ed. 2023-8

[7]
Evaluation of oil loaded electrospun polyurethane nanofibrous mat as wound dressing.

J Biomater Sci Polym Ed. 2021-9

[8]
Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing.

Mil Med Res. 2017-10-27

[9]
3D PCL/collagen nanofibrous medical dressing for one-time treatment of diabetic foot ulcers.

Colloids Surf B Biointerfaces. 2022-6

[10]
RGD peptide grafted polybutylene adipate--terephthalate/gelatin electrospun nanofibers loaded with a matrix metalloproteinase inhibitor drug for alleviating of wounds: an / study.

Drug Dev Ind Pharm. 2020-3-3

引用本文的文献

[1]
Cellulose-Based Nanofibers Infused with Biotherapeutics for Enhanced Wound-Healing Applications.

ACS Polym Au. 2025-2-10

[2]
Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing.

Int J Nanomedicine. 2024-12-27

[3]
An Advanced Review: Polyurethane-Related Dressings for Skin Wound Repair.

Polymers (Basel). 2023-11-1

[4]
Electrospun Scaffolds as Antimicrobial Herbal Extract Delivery Vehicles for Wound Healing.

J Funct Biomater. 2023-9-19

[5]
Development of Polyurethane/Peptide-Based Carriers with Self-Healing Properties.

Polymers (Basel). 2023-3-29

[6]
Local Drug Delivery Strategies towards Wound Healing.

Pharmaceutics. 2023-2-13

[7]
Recent Progress of Electrospun Herbal Medicine Nanofibers.

Biomolecules. 2023-1-16

[8]
Nanomaterials supported by polymers for tissue engineering applications: A review.

Heliyon. 2022-12-13

[9]
5-Fluorouracil-Immobilized Hyaluronic Acid Hydrogel Arrays on an Electrospun Bilayer Membrane as a Drug Patch.

Bioengineering (Basel). 2022-11-30

[10]
Combination of Poly(ε-Caprolactone) Biomaterials and Essential Oils to Achieve Anti-Bacterial and Osteo-Proliferative Properties for 3D-Scaffolds in Regenerative Medicine.

Pharmaceutics. 2022-9-5

本文引用的文献

[1]
Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies.

Mater Sci Eng C Mater Biol Appl. 2020-9

[2]
Codelivery of Sustainable Antimicrobial Agents and Platelet-Derived Growth Factor via Biodegradable Nanofibers for Repair of Diabetic Infectious Wounds.

ACS Infect Dis. 2020-10-9

[3]
Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies.

Sci Rep. 2020-5-20

[4]
Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study.

Int J Biol Macromol. 2020-2-11

[5]
Physical and Antibacterial Properties of Peppermint Essential Oil Loaded Poly (-caprolactone) (PCL) Electrospun Fiber Mats for Wound Healing.

Front Bioeng Biotechnol. 2019-11-26

[6]
Evaluation of keratin biomaterial containing silver nanoparticles as a potential wound dressing in full-thickness skin wound model in diabetic mice.

J Tissue Eng Regen Med. 2020-2

[7]
Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing.

Biomaterials. 2018-8-24

[8]
Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus.

Food Chem. 2017-4-1

[9]
Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives.

J Control Release. 2016-9-20

[10]
Effect of Malva sylvestris cream on burn injury and wounds in rats.

Avicenna J Phytomed. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索