文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

电纺草药纳米纤维的最新进展。

Recent Progress of Electrospun Herbal Medicine Nanofibers.

机构信息

School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.

School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China.

出版信息

Biomolecules. 2023 Jan 16;13(1):184. doi: 10.3390/biom13010184.


DOI:10.3390/biom13010184
PMID:36671570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9855805/
Abstract

Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.

摘要

草药具有悠久的医疗功效历史,毒性低、副作用小、生物相容性好。然而,由于其水溶性低,草药提取物和生物活性化合物的生物利用度较差。为了克服溶解度问题,静电纺丝技术可以提供一种替代的传递方式来解决这些问题。静电纺丝纤维具有比表面积大、孔隙率高、机械强度好、结构灵活等优点。同时,各种天然和合成聚合物结合的纤维可以模拟细胞外基质在不同医学领域的应用。本文综述了静电纺丝技术的发展以及用于将草药掺入静电纺丝纳米纤维中的聚合物。最后,讨论了这些草药纳米纤维在生物医学(药物输送、伤口敷料、组织工程)和食品领域的应用的最新进展及其未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/805fca640b50/biomolecules-13-00184-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/3e483f134e56/biomolecules-13-00184-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/ae7aba9a7aa5/biomolecules-13-00184-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/37108b482b34/biomolecules-13-00184-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/8f8caa85059d/biomolecules-13-00184-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/49fcf0537ef9/biomolecules-13-00184-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/26612e46025a/biomolecules-13-00184-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/e4392ee92378/biomolecules-13-00184-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/7541633e06cf/biomolecules-13-00184-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/533e2d00f490/biomolecules-13-00184-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/2ff8b8395bd1/biomolecules-13-00184-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/cdc5991661b7/biomolecules-13-00184-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/d2e61054b18c/biomolecules-13-00184-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/d0786e4f000c/biomolecules-13-00184-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/805fca640b50/biomolecules-13-00184-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/3e483f134e56/biomolecules-13-00184-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/ae7aba9a7aa5/biomolecules-13-00184-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/37108b482b34/biomolecules-13-00184-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/8f8caa85059d/biomolecules-13-00184-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/49fcf0537ef9/biomolecules-13-00184-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/26612e46025a/biomolecules-13-00184-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/e4392ee92378/biomolecules-13-00184-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/7541633e06cf/biomolecules-13-00184-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/533e2d00f490/biomolecules-13-00184-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/2ff8b8395bd1/biomolecules-13-00184-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/cdc5991661b7/biomolecules-13-00184-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/d2e61054b18c/biomolecules-13-00184-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/d0786e4f000c/biomolecules-13-00184-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9855805/805fca640b50/biomolecules-13-00184-g014.jpg

相似文献

[1]
Recent Progress of Electrospun Herbal Medicine Nanofibers.

Biomolecules. 2023-1-16

[2]
Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications.

J Control Release. 2017-3-9

[3]
Advances and applications of crosslinked electrospun biomacromolecular nanofibers.

Int J Biol Macromol. 2024-6

[4]
Protein- and peptide-based electrospun nanofibers in medical biomaterials.

Nanomedicine. 2012-3-7

[5]
Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications.

Front Bioeng Biotechnol. 2022-12-1

[6]
Electrospun Polymeric Nanofibers: Current Trends in Synthesis, Surface Modification, and Biomedical Applications.

ACS Appl Bio Mater. 2024-7-15

[7]
Recent advances in electrospun protein fibers/nanofibers for the food and biomedical applications.

Adv Colloid Interface Sci. 2023-1

[8]
Electrospinning of polymeric nanofibers for drug delivery applications.

J Control Release. 2014-4-22

[9]
Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications.

J Biomed Mater Res A. 2015-2

[10]
Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review.

Sensors (Basel). 2022-11-9

引用本文的文献

[1]
Bromelain-Infused Poly(vinyl alcohol)/Hydroxyethyl Cellulose Nanofibrous Scaffolds for Cancer Therapy: Fabrication, Characterization, and Assessment.

ACS Omega. 2025-5-15

[2]
Fabrication of zein nanofibrous scaffold containing Scrophularia striata extract for biomedical application.

J Biol Eng. 2025-2-11

[3]
The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game.

Molecules. 2025-1-18

[4]
Phytochemical screening, antioxidant and anti-Parkinson activities of Berula erecta: A novel medicinal plant.

PLoS One. 2024

[5]
Electrospun Cellulose Acetate/Poly(Vinyl Alcohol) Nanofibers Loaded with Methyl Gallate and Gallic Acid for Anti- Applications.

Polymers (Basel). 2024-10-23

[6]
Recent Progress of Electrospun Nanofiber Dressing in the Promotion of Wound Healing.

Polymers (Basel). 2024-9-13

[7]
Mass spectrometry imaging as a promising analytical technique for herbal medicines: an updated review.

Front Pharmacol. 2024-8-1

[8]
Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review.

Front Pharmacol. 2024-7-18

[9]
Bringing back Galium aparine L. from forgotten corners of traditional wound treatment procedures: an antimicrobial, antioxidant, and in-vitro wound healing assay along with HPTLC fingerprinting study.

BMC Complement Med Ther. 2024-7-23

[10]
Nanofibrous ε-Polycaprolactone Matrices Containing Nano-Hydroxyapatite and L. Extract: Physicochemical and Biological Characterization for Oral Applications.

Polymers (Basel). 2024-4-30

本文引用的文献

[1]
Electrospun self-emulsifying core-shell nanofibers for effective delivery of paclitaxel.

Front Bioeng Biotechnol. 2023-1-19

[2]
Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing.

Biomolecules. 2022-11-22

[3]
Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles.

J Funct Biomater. 2022-12-9

[4]
Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing.

Nat Commun. 2022-11-29

[5]
The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation.

Polymers (Basel). 2022-11-16

[6]
Multifluid electrospinning for multi-drug delivery systems: pros and cons, challenges, and future directions.

Biomater Sci. 2022-12-20

[7]
Protocol for atmospheric water harvesting using polymerization honeycomb hygroscopic polymers.

STAR Protoc. 2022-12-16

[8]
Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications.

Polymers (Basel). 2022-10-13

[9]
Electrospun Porous Nanofibers: Pore-Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater.

Polymers (Basel). 2022-9-23

[10]
Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索