Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Bioimaging Analytics, GlaxoSmithKline, Collegeville, PA, USA.
Nat Protoc. 2021 Jul;16(7):3572-3595. doi: 10.1038/s41596-021-00549-7. Epub 2021 Jun 18.
Deep learning offers the potential to extract more than meets the eye from images captured by imaging flow cytometry. This protocol describes the application of deep learning to single-cell images to perform supervised cell classification and weakly supervised learning, using example data from an experiment exploring red blood cell morphology. We describe how to acquire and transform suitable input data as well as the steps required for deep learning training and inference using an open-source web-based application. All steps of the protocol are provided as open-source Python as well as MATLAB runtime scripts, through both command-line and graphic user interfaces. The protocol enables a flexible and friendly environment for morphological phenotyping using supervised and weakly supervised learning and the subsequent exploration of the deep learning features using multi-dimensional visualization tools. The protocol requires 40 h when training from scratch and 1 h when using a pre-trained model.
深度学习有可能从成像流式细胞术捕获的图像中提取更多信息。本方案描述了如何将深度学习应用于单细胞图像,以使用探索红细胞形态的实验的示例数据执行有监督的细胞分类和弱监督学习。我们介绍了如何获取和转换合适的输入数据,以及使用开源的基于网络的应用程序进行深度学习训练和推理所需的步骤。方案中的所有步骤都提供了开源的 Python 和 MATLAB 运行时脚本,通过命令行和图形用户界面均可使用。该方案使用有监督和弱监督学习为形态表型提供了一个灵活友好的环境,并使用多维可视化工具探索深度学习特征。从头开始训练需要 40 小时,使用预训练模型则需要 1 小时。