Department of Cardiovascular Medicine, The University of Tokyo Hospital.
Department of Clinical Laboratory, The University of Tokyo Hospital.
Circ J. 2021 Dec 24;86(1):87-95. doi: 10.1253/circj.CJ-21-0265. Epub 2021 Jun 26.
Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.
Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.
A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.
由于早期诊断亚临床心脏结节病(CS)仍然困难,我们开发了一种深度学习算法,使用超声心动图电影来区分 CS 患者和健康受试者。
在 2015 年 1 月至 2019 年 12 月期间接受超声心动图检查的患者中,我们从 50 例 CS 患者和 149 例健康受试者中选择了 151 例超声心动图电影。我们使用包含 212 例超声心动图电影的数据集训练了两个 3D 卷积神经网络(3D-CNN),以识别 CS 患者,其中包括使用和不使用迁移学习方法(预训练算法和非预训练算法)。在一个独立的 41 例超声心动图电影数据集上,预训练算法的受试者工作特征曲线下面积(AUC)大于非预训练算法(0.842,95%置信区间[CI]:0.722-0.962 对 0.724,95%CI:0.566-0.882,P=0.253)。由 5 名心脏病专家对同一组 41 例超声心动图电影的解释的 AUC 与预训练算法没有显著差异(0.855,95%CI:0.735-0.975 对 0.842,95%CI:0.722-0.962,P=0.885)。敏感性图表明,预训练算法主要集中在二尖瓣区域。
使用迁移学习方法的 3D-CNN 可能是使用超声心动图电影检测 CS 的一种有前途的工具。