Suppr超能文献

利用深度学习方法对黄斑水肿进行自动分割,用于眼部疾病的诊断。

Automated segmentation of macular edema for the diagnosis of ocular disease using deep learning method.

机构信息

College of Information Science, Shanghai Ocean University, Shanghai, 201306, China.

The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 200025, China.

出版信息

Sci Rep. 2021 Jun 28;11(1):13392. doi: 10.1038/s41598-021-92458-8.

Abstract

Macular edema is considered as a major cause of visual loss and blindness in patients with ocular fundus diseases. Optical coherence tomography (OCT) is a non-invasive imaging technique, which has been widely applied for diagnosing macular edema due to its non-invasive and high resolution properties. However, the practical applications remain challenges due to the distorted retinal morphology and blurred boundaries near macular edema. Herein, we developed a novel deep learning model for the segmentation of macular edema in OCT images based on DeepLab framework (OCT-DeepLab). In this model, we used atrous spatial pyramid pooling (ASPP) to detect macular edema at multiple features and used the fully connected conditional random field (CRF) to refine the boundary of macular edema. OCT-DeepLab model was compared against the traditional hand-crafted methods (C-V and SBG) and the end-to-end methods (FCN, PSPnet, and U-net) to estimate the segmentation performance. OCT-DeepLab showed great advantage over the hand-crafted methods (C-V and SBG) and end-to-end methods (FCN, PSPnet, and U-net) as shown by higher precision, sensitivity, specificity, and F1-score. The segmentation performance of OCT-DeepLab was comparable to that of manual label, with an average area under the curve (AUC) of 0.963, which was superior to other end-to-end methods (FCN, PSPnet, and U-net). Collectively, OCT-DeepLab model is suitable for the segmentation of macular edema and assist ophthalmologists in the management of ocular disease.

摘要

黄斑水肿被认为是眼底疾病患者视力丧失和失明的主要原因。光学相干断层扫描(OCT)是一种非侵入性成像技术,由于其非侵入性和高分辨率的特性,已广泛应用于黄斑水肿的诊断。然而,由于视网膜形态扭曲和黄斑水肿附近边界模糊,实际应用仍然存在挑战。在此,我们基于 DeepLab 框架(OCT-DeepLab)开发了一种用于 OCT 图像中黄斑水肿分割的新型深度学习模型。在该模型中,我们使用空洞空间金字塔池化(ASPP)在多个特征上检测黄斑水肿,并使用全连接条件随机场(CRF)来细化黄斑水肿的边界。OCT-DeepLab 模型与传统的手工制作方法(C-V 和 SBG)和端到端方法(FCN、PSPnet 和 U-net)进行比较,以评估分割性能。OCT-DeepLab 模型在精度、灵敏度、特异性和 F1 评分方面均优于手工制作方法(C-V 和 SBG)和端到端方法(FCN、PSPnet 和 U-net)。OCT-DeepLab 的分割性能与手动标记相当,平均曲线下面积(AUC)为 0.963,优于其他端到端方法(FCN、PSPnet 和 U-net)。总之,OCT-DeepLab 模型适用于黄斑水肿的分割,并有助于眼科医生对眼病的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ca/8238965/956d282243d9/41598_2021_92458_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验