School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
School of Chemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TS, United Kingdom.
Genes Dev. 2021 Jul 1;35(13-14):937-939. doi: 10.1101/gad.348691.121.
The prototypic and ubiquitous microtubule motor, kinesin-1, uses a variety of adaptor proteins to facilitate the selective transport of diverse cargo within the cell. These cargo adaptors bind to the motor complex through interactions with the kinesin light or heavy chains (KLCs or KHCs). In this issue of , Dimitrova-Paternoga et al. (pp. 976-991) present the first structural characterization of a KHC-cargo adaptor interface. They describe an antiparallel heterotrimeric coiled-coil complex between the carboxy tail of KHC and Tm1-I/C (Tm1), the atypical tropomyosin that is important for mRNA transport in oocytes. This interaction enhances direct binding between KHC and RNA. Their findings demonstrate the structural plasticity of the KHC tail as a platform for protein-protein interactions and reveal how a cargo adaptor protein can modify a motor-RNA interface to promote transport.
原型和普遍存在的微管马达,驱动蛋白-1,使用多种衔接蛋白来促进细胞内不同货物的选择性运输。这些货物衔接蛋白通过与驱动蛋白轻链或重链(KLC 或 KHC)的相互作用与马达复合物结合。在本期 中,Dimitrova-Paternoga 等人(第 976-991 页)首次对 KHC-货物衔接蛋白界面进行了结构表征。他们描述了 KHC 羧基尾与 Tm1-I/C(Tm1)之间的反平行异三聚体卷曲螺旋复合物,Tm1 是卵母细胞中 mRNA 运输所必需的非典型原肌球蛋白。这种相互作用增强了 KHC 和 RNA 之间的直接结合。他们的发现表明 KHC 尾巴具有作为蛋白质-蛋白质相互作用平台的结构可塑性,并揭示了货物衔接蛋白如何修饰马达-RNA 界面以促进运输。