Department of Chemistry, Vrije Universiteit Brussel, Brussel, Belgium.
Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
ISME J. 2022 Jan;16(1):50-57. doi: 10.1038/s41396-021-01048-z. Epub 2021 Jul 2.
Cable bacteria (CB) are filamentous Desulfobulbaceae that split the energy-conserving reaction of sulfide oxidation into two half reactions occurring in distinct cells. CB can use nitrate, but the reduction pathway is unknown, making it difficult to assess their direct impact on the N-cycle. Here we show that the freshwater cable bacterium Ca. Electronema sp. GS performs dissimilatory nitrate reduction to ammonium (DNRA). NO-amended sediment with Ca. Electronema sp. GS showed higher rates of DNRA and nitrite production than sediment without Ca. Electronema sp. GS. Electron flux from sulfide oxidation, inferred from electric potential (EP) measurements, matched the electron flux needed to drive CB-mediated nitrate reduction to nitrite and ammonium. Ca. Electronema sp. GS expressed a complete nap operon for periplasmic nitrate reduction to nitrite, and a putative octaheme cytochrome c (pOCC), whose involvement in nitrite reduction to ammonium remains to be verified. Phylogenetic analysis suggests that the capacity for DNRA was acquired in multiple events through horizontal gene transfer from different organisms, before CB split into different salinity niches. The architecture of the nitrate reduction system suggests absence of energy conservation through oxidative phosphorylation, indicating that CB primarily conserve energy through the half reaction of sulfide oxidation.
缆线菌(CB)是丝状脱硫杆菌科的一种,它们将硫化物氧化的能量守恒反应分裂成两个在不同细胞中发生的半反应。CB 可以利用硝酸盐,但还原途径未知,这使得难以评估它们对 N 循环的直接影响。在这里,我们表明淡水缆线菌 Ca. Electronema sp. GS 进行异化硝酸盐还原为铵(DNRA)。与没有 Ca. Electronema sp. GS 的沉积物相比,添加了 NO 的含有 Ca. Electronema sp. GS 的沉积物表现出更高的 DNRA 和亚硝酸盐产生速率。从电势能(EP)测量推断出的来自硫化物氧化的电子通量,与驱动 CB 介导的硝酸盐还原为亚硝酸盐和铵所需的电子通量相匹配。Ca. Electronema sp. GS 表达了完整的 nap 操纵子,用于将硝酸盐还原为亚硝酸盐,以及一种假定的八血红素细胞色素 c(pOCC),其在将亚硝酸盐还原为铵中的作用仍有待验证。系统发育分析表明,DNRA 的能力是通过来自不同生物体的水平基因转移在多个事件中获得的,之后 CB 才分裂到不同盐度的生态位中。硝酸盐还原系统的结构表明不存在通过氧化磷酸化进行的能量守恒,这表明 CB 主要通过硫化物氧化的半反应来保存能量。