Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy.
Elife. 2021 Jul 9;10:e67400. doi: 10.7554/eLife.67400.
Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural connections comprising the human connectome are hypothesized to impose constraints on the dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the extent to which fast neural dynamics in the human brain are constrained by structural connections inferred from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain activity at the millisecond scale from source-reconstructed MEG data, estimating the probability that any two brain regions will significantly deviate from baseline activity in consecutive time epochs. We find that the structural connectome relates to, and likely affects, the rapid spreading of neuronal avalanches, evidenced by a significant association between these transition probabilities and structural connectivity strengths (r = 0.37, p<0.0001). This finding opens new avenues to study the relationship between brain structure and neural dynamics.
大脑在休息时的活动在空间和时间上呈现出复杂且快速演变的模式。据推测,由结构连接组成的人类连接组对这种活动的动力学施加了约束。在这里,我们使用脑磁图(MEG)来量化从扩散 MRI 轨迹推断出的结构连接对人类大脑中快速神经动力学的约束程度。我们从源重建的 MEG 数据中以毫秒为单位来描述全脑活动的时空展开,估计任何两个脑区在连续的时间间隔中是否会显著偏离基线活动的概率。我们发现,结构连接组与神经元雪崩的快速传播有关,并可能对其产生影响,这一证据来自于这些转移概率与结构连接强度之间存在显著的相关性(r=0.37,p<0.0001)。这一发现为研究大脑结构与神经动力学之间的关系开辟了新的途径。