Suppr超能文献

基于 CT 影像的机器学习放射组学模型对小细胞肺癌的早期识别。

Machine Learning Radiomics Model for Early Identification of Small-Cell Lung Cancer on Computed Tomography Scans.

机构信息

Veterans Affairs Palo Alto Health Care System, Palo Alto, CA.

Department of Radiology, Stanford University, Stanford, CA.

出版信息

JCO Clin Cancer Inform. 2021 Jun;5:746-757. doi: 10.1200/CCI.21.00021.

Abstract

PURPOSE

Small-cell lung cancer (SCLC) is the deadliest form of lung cancer, partly because of its short doubling time. Delays in imaging identification and diagnosis of nodules create a risk for stage migration. The purpose of our study was to determine if a machine learning radiomics model can detect SCLC on computed tomography (CT) among all nodules at least 1 cm in size.

MATERIALS AND METHODS

Computed tomography scans from a single institution were selected and resampled to 1 × 1 × 1 mm. Studies were divided into SCLC and other scans comprising benign, adenocarcinoma, and squamous cell carcinoma that were segregated into group A (noncontrast scans) and group B (contrast-enhanced scans). Four machine learning classification models, support vector classifier, random forest (RF), XGBoost, and logistic regression, were used to generate radiomic models using 59 quantitative first-order and texture Imaging Biomarker Standardization Initiative compliant PyRadiomics features, which were found to be robust between two segmenters with minimum Redundancy Maximum Relevance feature selection within each leave-one-out-cross-validation to avoid overfitting. The performance was evaluated using a receiver operating characteristic curve. A final model was created using the RF classifier and aggregate minimum Redundancy Maximum Relevance to determine feature importance.

RESULTS

A total of 103 studies were included in the analysis. The area under the receiver operating characteristic curve for RF, support vector classifier, XGBoost, and logistic regression was 0.81, 0.77, 0.84, and 0.84 in group A, and 0.88, 0.87, 0.85, and 0.81 in group B, respectively. Nine radiomic features in group A and 14 radiomic features in group B were predictive of SCLC. Six radiomic features overlapped between groups A and B.

CONCLUSION

A machine learning radiomics model may help differentiate SCLC from other lung lesions.

摘要

目的

小细胞肺癌(SCLC)是肺癌中最致命的一种,部分原因是其倍增时间短。影像学对结节的识别和诊断的延迟增加了分期转移的风险。本研究的目的是确定机器学习放射组学模型是否可以在至少 1 厘米大小的所有结节中检测到 CT 上的 SCLC。

材料和方法

选择了来自单个机构的 CT 扫描并重新采样为 1×1×1mm。研究分为 SCLC 和其他扫描,包括良性、腺癌和鳞状细胞癌,分为组 A(非对比扫描)和组 B(对比增强扫描)。使用支持向量分类器、随机森林(RF)、XGBoost 和逻辑回归四种机器学习分类模型,使用 59 种定量一阶和纹理成像生物标志物标准化倡议兼容的 PyRadiomics 特征生成放射组学模型,在两位分割者之间发现这些特征具有稳健性,并且在每次留一交叉验证中都使用最小冗余最大相关性特征选择,以避免过度拟合。使用接收者操作特征曲线评估性能。使用 RF 分类器和聚合最小冗余最大相关性创建最终模型,以确定特征的重要性。

结果

共纳入 103 项研究进行分析。在组 A 中,RF、支持向量分类器、XGBoost 和逻辑回归的接收者操作特征曲线下面积分别为 0.81、0.77、0.84 和 0.84,在组 B 中分别为 0.88、0.87、0.85 和 0.81。在组 A 中有 9 个放射组学特征,在组 B 中有 14 个放射组学特征可以预测 SCLC。在组 A 和 B 之间有 6 个放射组学特征重叠。

结论

机器学习放射组学模型可能有助于区分 SCLC 和其他肺部病变。

相似文献

2
Radiomics for Classification of Lung Cancer Histological Subtypes Based on Nonenhanced Computed Tomography.
Acad Radiol. 2019 Sep;26(9):1245-1252. doi: 10.1016/j.acra.2018.10.013. Epub 2018 Nov 28.
5
Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
Eur J Radiol. 2019 Sep;118:32-37. doi: 10.1016/j.ejrad.2019.06.025. Epub 2019 Jun 28.
6
Histologic subtype classification of non-small cell lung cancer using PET/CT images.
Eur J Nucl Med Mol Imaging. 2021 Feb;48(2):350-360. doi: 10.1007/s00259-020-04771-5. Epub 2020 Aug 10.
8
9
Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients.
Comput Biol Med. 2021 Feb;129:104135. doi: 10.1016/j.compbiomed.2020.104135. Epub 2020 Nov 23.
10
CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
Eur Radiol. 2020 Jul;30(7):4050-4057. doi: 10.1007/s00330-020-06694-z. Epub 2020 Feb 28.

引用本文的文献

1
Peritumoral Radiomic Features on CT for Differential Diagnosis in Small-Cell Lung Cancer: Potential for Surgical Decision-Making.
Cancer Control. 2025 Jan-Dec;32:10732748251351754. doi: 10.1177/10732748251351754. Epub 2025 Jun 16.
2
Exploring Artificial Intelligence Biases in Predictive Models for Cancer Diagnosis.
Cancers (Basel). 2025 Jan 26;17(3):407. doi: 10.3390/cancers17030407.
3
Using MRI radiomics to predict the efficacy of immunotherapy for brain metastasis in patients with small cell lung cancer.
Thorac Cancer. 2024 Mar;15(9):738-748. doi: 10.1111/1759-7714.15259. Epub 2024 Feb 20.
4
Performance of alternative manual and automated deep learning segmentation techniques for the prediction of benign and malignant lung nodules.
J Med Imaging (Bellingham). 2023 Jul;10(4):044006. doi: 10.1117/1.JMI.10.4.044006. Epub 2023 Aug 9.
5
Topological data analysis of thoracic radiographic images shows improved radiomics-based lung tumor histology prediction.
Patterns (N Y). 2022 Dec 12;4(1):100657. doi: 10.1016/j.patter.2022.100657. eCollection 2023 Jan 13.
6
Artificial intelligence in oncologic imaging.
Eur J Radiol Open. 2022 Sep 29;9:100441. doi: 10.1016/j.ejro.2022.100441. eCollection 2022.

本文引用的文献

1
The American Cancer Society's Facts & Figures: 2020 Edition.
J Adv Pract Oncol. 2020 Mar;11(2):135-136. doi: 10.6004/jadpro.2020.11.2.1. Epub 2020 Mar 1.
3
Histological Subtypes Classification of Lung Cancers on CT Images Using 3D Deep Learning and Radiomics.
Acad Radiol. 2021 Sep;28(9):e258-e266. doi: 10.1016/j.acra.2020.06.010. Epub 2020 Jul 1.
4
Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype.
Lung Cancer. 2020 Aug;146:197-208. doi: 10.1016/j.lungcan.2020.05.028. Epub 2020 Jun 2.
6
7
Treatment Timing in Small Cell Lung Cancer, a National Cancer Database Analysis.
Am J Clin Oncol. 2020 May;43(5):362-365. doi: 10.1097/COC.0000000000000676.
8
Cancer statistics, 2020.
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验