Department of International Logistics Management, Faculty of Business, Yaşar University, İzmir 35100, Turkey.
Department of Information Management, İzmir Katip Celebi University, İzmir 35620, Turkey.
Int J Environ Res Public Health. 2021 Jul 14;18(14):7513. doi: 10.3390/ijerph18147513.
Ever-changing conditions and emerging new challenges affect the ability of the healthcare sector to survive with the current system, and to maintain its processes effectively. In the healthcare sector, the conservation of the natural resources is being obstructed by insufficient infrastructure for managing residual waste resulting from single-use medical materials, increased energy use, and its environmental burden. In this context, circularity and sustainability concepts have become essential in healthcare to meliorate the sector's negative impacts on the environment. The main aim of this study is to identify the barriers related to circular economy (CE) in the healthcare sector, apply big data analytics in healthcare, and provide solutions to these barriers. The contribution of this research is the detailed examination of the current healthcare literature about CE adaptation, and a proposal for a big data-enabled solutions framework to barriers to circularity, using fuzzy best-worst Method (BWM) and fuzzy VIKOR. Based on the findings, managerial, policy, and theoretical implementations are recommended to support sustainable development initiatives in the healthcare sector.
不断变化的条件和新出现的挑战影响了医疗保健部门在现有系统下生存的能力,并影响了其有效维持各流程的能力。在医疗保健部门,由于缺乏管理一次性医疗材料产生的残余废物的基础设施,能源使用增加,以及其环境负担,自然资源的保护受到阻碍。在这种情况下,循环性和可持续性概念在医疗保健领域变得至关重要,以减轻该部门对环境的负面影响。本研究的主要目的是确定与医疗保健部门循环经济(CE)相关的障碍,在医疗保健中应用大数据分析,并为这些障碍提供解决方案。本研究的贡献在于详细考察了当前关于 CE 适应性的医疗保健文献,并提出了一个基于模糊最佳最差方法(BWM)和模糊 VIKOR 的大数据支持的循环性障碍解决方案框架。基于研究结果,建议采取管理、政策和理论实施措施,以支持医疗保健部门的可持续发展倡议。