Suppr超能文献

基于卷积神经网络的油棕自动气孔检测。

Automated stomata detection in oil palm with convolutional neural network.

机构信息

Sime Darby Plantation Technology Centre Sdn Bhd, Serdang, Selangor Darul Ehsan, Malaysia.

Department of Biology and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor Darul Ehsan, Malaysia.

出版信息

Sci Rep. 2021 Jul 26;11(1):15210. doi: 10.1038/s41598-021-94705-4.

Abstract

Stomatal density is an important trait for breeding selection of drought tolerant oil palms; however, its measurement is extremely tedious. To accelerate this process, we developed an automated system. Leaf samples from 128 palms ranging from nursery (1 years old), juvenile (2-3 years old) and mature (> 10 years old) were collected to build an oil palm specific stomata detection model. Micrographs were split into tiles, then used to train a stomata object detection convolutional neural network model through transfer learning. The detection model was then tested on leaf samples acquired from three independent oil palm populations of young seedlings (A), juveniles (B) and productive adults (C). The detection accuracy, measured in precision and recall, was 98.00% and 99.50% for set A, 99.70% and 97.65% for set B, and 99.55% and 99.62% for set C, respectively. The detection model was cross-applied to another set of adult palms using stomata images taken with a different microscope and under different conditions (D), resulting in precision and recall accuracy of 99.72% and 96.88%, respectively. This indicates that the model built generalized well, in addition has high transferability. With the completion of this detection model, stomatal density measurement can be accelerated. This in turn will accelerate the breeding selection for drought tolerance.

摘要

气孔密度是培育耐旱油棕的重要特征;然而,其测量非常繁琐。为了加速这一过程,我们开发了一个自动化系统。从 128 株油棕的叶片样本中进行收集,这些样本涵盖了苗圃(1 年)、幼龄(2-3 年)和成熟(>10 年)阶段,以建立油棕特有的气孔检测模型。显微图像被分割成小块,然后通过迁移学习来训练气孔目标检测卷积神经网络模型。该检测模型随后在三个独立的油棕幼苗(A)、幼龄(B)和成年(C)种群的叶片样本上进行了测试。在 A 组中,检测精度(以精度和召回率衡量)分别为 98.00%和 99.50%;在 B 组中,检测精度分别为 99.70%和 97.65%;在 C 组中,检测精度分别为 99.55%和 99.62%。该检测模型还被交叉应用于另一组使用不同显微镜和在不同条件下拍摄的成年油棕叶片(D),其精度和召回率分别为 99.72%和 96.88%。这表明该模型不仅具有良好的泛化能力,而且具有很高的可转移性。随着这个检测模型的完成,气孔密度的测量可以得到加速。这反过来又将加速耐旱性的选育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/476c/8313554/665890ed75be/41598_2021_94705_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验