Gupta Ritu, Jash Priyajit, Sachan Pradeep, Bayat Akhtar, Singh Vikram, Mondal Prakash Chandra
Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India.
Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, 33400, Talence, France.
Angew Chem Int Ed Engl. 2021 Dec 20;60(52):26904-26921. doi: 10.1002/anie.202104724. Epub 2021 Aug 26.
Molecules are fascinating candidates for constructing tunable and electrically conducting devices by the assembly of either a single molecule or an ensemble of molecules between two electrical contacts followed by current-voltage (I-V) analysis, which is often termed "molecular electronics". Recently, there has been also an upsurge of interest in spin-based electronics or spintronics across the molecules, which offer additional scope to create ultrafast responsive devices with less power consumption and lower heat generation using the intrinsic spin property rather than electronic charge. Researchers have been exploring this idea of utilizing organic molecules, organometallics, coordination complexes, polymers, and biomolecules (proteins, enzymes, oligopeptides, DNA) in integrating molecular electronics and spintronics devices. Although several methods exist to prepare molecular thin-films on suitable electrodes, the electrochemical potential-driven technique has emerged as highly efficient. In this Review we describe recent advances in the electrochemical potential driven growth of nanometric various molecular films on technologically relevant substrates, including non-magnetic and magnetic electrodes to investigate the stimuli-responsive charge and spin transport phenomena.
分子是构建可调谐且导电装置的极具吸引力的候选对象,其方式是在两个电触点之间组装单个分子或分子集合,随后进行电流-电压(I-V)分析,这通常被称为“分子电子学”。最近,跨分子的基于自旋的电子学或自旋电子学也引起了人们的浓厚兴趣,它利用本征自旋特性而非电荷,为制造超快响应、低功耗和低发热的器件提供了更多可能性。研究人员一直在探索利用有机分子、有机金属化合物、配位络合物、聚合物和生物分子(蛋白质、酶、寡肽、DNA)来集成分子电子学和自旋电子学器件的想法。尽管存在多种在合适电极上制备分子薄膜的方法,但电化学势驱动技术已成为一种高效方法。在本综述中,我们描述了在技术相关衬底上,通过电化学势驱动生长纳米级各种分子薄膜的最新进展,这些衬底包括非磁性和磁性电极,用于研究刺激响应电荷和自旋输运现象。