Suppr超能文献

纳米靶向耐药感染:特别关注生物膜景观。

Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape.

机构信息

Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States.

Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq.

出版信息

Bioconjug Chem. 2021 Aug 18;32(8):1411-1430. doi: 10.1021/acs.bioconjchem.1c00116. Epub 2021 Jul 28.

Abstract

Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.

摘要

细菌对抗生素化合物的耐药性是医学和公共卫生领域日益关注的问题。克服细菌适应性和可复制的耐药机制需要基于化学的方法。现在,工程纳米颗粒 (NPs) 在这方面提供了独特的优势。然而,大多数原位感染(在人类中)发生在附着的生物膜中,这些生物膜被细胞外聚合物的保护性包围基质所包围,微生物细胞在其中的存活率得到提高。这在设计和部署抗菌药物时需要特别考虑。在这里,我们回顾了最近使用 NPs 对抗耐药菌的努力,然后探讨了如何专门设计 NP 表面来增强抗菌化合物的效力和传递。在设计 NPs 时,必须克服特殊的 NP 工程挑战,以穿透生物膜固有的保护屏障,并成功将抗菌药物递送到细菌细胞。在通过 NPs 开发新抗生素及其作用机制和靶向传递方面,未来的挑战也在讨论中。

相似文献

1
Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape.
Bioconjug Chem. 2021 Aug 18;32(8):1411-1430. doi: 10.1021/acs.bioconjchem.1c00116. Epub 2021 Jul 28.
2
Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections.
Nat Rev Microbiol. 2021 Jan;19(1):23-36. doi: 10.1038/s41579-020-0420-1. Epub 2020 Aug 19.
3
Nanotechnology as a therapeutic tool to combat microbial resistance.
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011. Epub 2013 Jul 24.
4
Combatting antibiotic-resistant bacteria using nanomaterials.
Chem Soc Rev. 2019 Jan 21;48(2):415-427. doi: 10.1039/c7cs00748e.
5
Nano-therapeutics: A revolution in infection control in post antibiotic era.
Nanomedicine. 2017 Oct;13(7):2281-2301. doi: 10.1016/j.nano.2017.06.015. Epub 2017 Jun 30.
6
Targeted, triggered drug delivery to tumor and biofilm microenvironments.
Nanomedicine (Lond). 2016 Apr;11(8):873-9. doi: 10.2217/nnm-2016-0014. Epub 2016 Mar 18.
7
Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control.
Chem Soc Rev. 2019 Jan 21;48(2):428-446. doi: 10.1039/c7cs00807d.
9
A mechanistic perspective on targeting bacterial drug resistance with nanoparticles.
J Drug Target. 2021 Nov;29(9):941-959. doi: 10.1080/1061186X.2021.1895818. Epub 2021 Mar 11.
10
Nanomaterials for alternative antibacterial therapy.
Int J Nanomedicine. 2017 Nov 10;12:8211-8225. doi: 10.2147/IJN.S132163. eCollection 2017.

引用本文的文献

2
New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14.
Heliyon. 2025 Jan 18;11(2):e42013. doi: 10.1016/j.heliyon.2025.e42013. eCollection 2025 Jan 30.
4
Black Phosphorus - A Rising Star in the Antibacterial Materials.
Int J Nanomedicine. 2023 Nov 10;18:6563-6584. doi: 10.2147/IJN.S438448. eCollection 2023.
6
Nanomaterials for Fighting Multidrug-Resistant Biofilm Infections.
BME Front. 2023 Apr 24;4:0017. doi: 10.34133/bmef.0017. eCollection 2023.
8
All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms.
Chem Sci. 2022 Oct 7;13(41):12071-12077. doi: 10.1039/d2sc03895a. eCollection 2022 Oct 26.

本文引用的文献

1
Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms.
Front Med Technol. 2020 Dec 11;2:610997. doi: 10.3389/fmedt.2020.610997. eCollection 2020.
2
A multimethod approach for analyzing FapC fibrillation and determining mass per length.
Biophys J. 2021 Jun 1;120(11):2262-2275. doi: 10.1016/j.bpj.2021.03.031. Epub 2021 Apr 1.
3
Biofilm mechanics: Implications in infection and survival.
Biofilm. 2019 Dec 19;2:100017. doi: 10.1016/j.bioflm.2019.100017. eCollection 2020 Dec.
4
Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review.
Adv Colloid Interface Sci. 2020 Dec;286:102298. doi: 10.1016/j.cis.2020.102298. Epub 2020 Oct 29.
5
Direct visualisation of drug-efflux in live Escherichia coli cells.
FEMS Microbiol Rev. 2020 Nov 24;44(6):782-792. doi: 10.1093/femsre/fuaa031.
6
Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications.
Biosens Bioelectron. 2020 Oct 1;165:112370. doi: 10.1016/j.bios.2020.112370. Epub 2020 Jun 20.
7
Nanoparticles as antibiotic-delivery vehicles (ADVs) overcome resistance by MRSA and other MDR bacterial pathogens: The grenade hypothesis.
J Glob Antimicrob Resist. 2020 Sep;22:811-817. doi: 10.1016/j.jgar.2020.06.023. Epub 2020 Jul 9.
9
Hydroxyapatite/gold/arginine: designing the structure to create antibacterial activity.
J Mater Chem B. 2014 Mar 21;2(11):1557-1564. doi: 10.1039/c3tb21612h. Epub 2014 Feb 7.
10
Heterogeneous Diffusion of Polystyrene Nanoparticles through an Alginate Matrix: The Role of Cross-linking and Particle Size.
Environ Sci Technol. 2020 Apr 21;54(8):5159-5166. doi: 10.1021/acs.est.9b06113. Epub 2020 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验