Suppr超能文献

发现 COVID-19 传播的动态模型。

Discovering dynamic models of COVID-19 transmission.

机构信息

Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China.

Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China.

出版信息

Transbound Emerg Dis. 2022 Jul;69(4):e64-e70. doi: 10.1111/tbed.14263. Epub 2021 Aug 11.

Abstract

Existing models about the dynamics of COVID-19 transmission often assume the mechanism of virus transmission and the form of the differential equations. These assumptions are hard to verify. Due to the biases of country-level data, it is inaccurate to construct the global dynamic of COVID-19. This research aims to provide a robust data-driven global model of the transmission dynamics. We apply sparse identification of nonlinear dynamics (SINDy) to model the dynamics of COVID-19 global transmission. One advantage is that we can discover the nonlinear dynamics from data without assumptions in the form of the governing equations. To overcome the problem of biased country-level data on the number of reported cases, we propose a robust global model of the dynamics by using maximin aggregation. Real data analysis shows the efficiency of our model.

摘要

现有的关于 COVID-19 传播动力学的模型通常假设病毒传播的机制和微分方程的形式。这些假设很难验证。由于国家层面数据的偏差,构建 COVID-19 的全球动态是不准确的。本研究旨在提供一个稳健的数据驱动的 COVID-19 传播动力学的全球模型。我们应用稀疏非线性动力学识别(SINDy)来模拟 COVID-19 的全球传播动力学。一个优点是,我们可以从数据中发现非线性动力学,而无需在控制方程的形式上做出假设。为了克服报告病例数量的国家层面数据的偏差问题,我们提出了一种使用极大极小聚集的稳健的全球动力学模型。实际数据分析表明了我们模型的效率。

相似文献

1
Discovering dynamic models of COVID-19 transmission.
Transbound Emerg Dis. 2022 Jul;69(4):e64-e70. doi: 10.1111/tbed.14263. Epub 2021 Aug 11.
2
Modeling and prediction of the transmission dynamics of COVID-19 based on the SINDy-LM method.
Nonlinear Dyn. 2021;105(3):2775-2794. doi: 10.1007/s11071-021-06707-6. Epub 2021 Jul 22.
3
SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics.
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200279. doi: 10.1098/rspa.2020.0279. Epub 2020 Oct 7.
4
Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method.
Sci Rep. 2023 May 16;13(1):7919. doi: 10.1038/s41598-023-34931-0.
5
SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis.
Nonlinear Dyn. 2022;110(3):2589-2609. doi: 10.1007/s11071-022-07755-2. Epub 2022 Aug 30.
6
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control.
Proc Math Phys Eng Sci. 2022 Apr;478(2260):20210904. doi: 10.1098/rspa.2021.0904. Epub 2022 Apr 13.
7
Sparsifying priors for Bayesian uncertainty quantification in model discovery.
R Soc Open Sci. 2022 Feb 23;9(2):211823. doi: 10.1098/rsos.211823. eCollection 2022 Feb.
8
Algorithmic discovery of dynamic models from infectious disease data.
Sci Rep. 2020 Apr 27;10(1):7061. doi: 10.1038/s41598-020-63877-w.
9
WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL SELECTION.
Multiscale Model Simul. 2021;19(3):1474-1497. doi: 10.1137/20m1343166. Epub 2021 Sep 7.
10
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit.
Proc Math Phys Eng Sci. 2018 Nov;474(2219):20180335. doi: 10.1098/rspa.2018.0335. Epub 2018 Nov 14.

引用本文的文献

1
Sparse regression for low-dimensional time-dynamic varying coefficient models with application to air quality data.
J Appl Stat. 2022 Feb 3;50(6):1378-1399. doi: 10.1080/02664763.2022.2028131. eCollection 2023.
2
SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis.
Nonlinear Dyn. 2022;110(3):2589-2609. doi: 10.1007/s11071-022-07755-2. Epub 2022 Aug 30.

本文引用的文献

1
Joint estimation of case fatality rate of COVID-19 and power of quarantine strategy performed in Wuhan, China.
Biom J. 2021 Jan;63(1):46-58. doi: 10.1002/bimj.202000116. Epub 2020 Nov 2.
2
Panel forecasts of country-level Covid-19 infections.
J Econom. 2021 Jan;220(1):2-22. doi: 10.1016/j.jeconom.2020.08.010. Epub 2020 Oct 16.
3
Accessing Covid19 epidemic outbreak in Tamilnadu and the impact of lockdown through epidemiological models and dynamic systems.
Measurement (Lond). 2021 Feb;169:108432. doi: 10.1016/j.measurement.2020.108432. Epub 2020 Sep 17.
4
A data-driven model to describe and forecast the dynamics of COVID-19 transmission.
PLoS One. 2020 Jul 31;15(7):e0236386. doi: 10.1371/journal.pone.0236386. eCollection 2020.
6
Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries.
Eur J Epidemiol. 2020 May;35(5):389-399. doi: 10.1007/s10654-020-00649-w. Epub 2020 May 19.
7
A model based study on the dynamics of COVID-19: Prediction and control.
Chaos Solitons Fractals. 2020 Jul;136:109889. doi: 10.1016/j.chaos.2020.109889. Epub 2020 May 13.
8
Algorithmic discovery of dynamic models from infectious disease data.
Sci Rep. 2020 Apr 27;10(1):7061. doi: 10.1038/s41598-020-63877-w.
9
Modeling the epidemic dynamics and control of COVID-19 outbreak in China.
Quant Biol. 2020;8(1):11-19. doi: 10.1007/s40484-020-0199-0. Epub 2020 Mar 11.
10
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit.
Proc Math Phys Eng Sci. 2018 Nov;474(2219):20180335. doi: 10.1098/rspa.2018.0335. Epub 2018 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验