Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Department of Chemistry, Emory University, Atlanta, GA, USA.
Nat Commun. 2021 Aug 3;12(1):4693. doi: 10.1038/s41467-021-24602-x.
Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm). Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution MFM. Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrin forces, as well as T cell receptor forces. Using SIM-MFM, we show that platelet traction force alignment occurs on a longer timescale than adhesion. Importantly, SIM-MFM can be implemented on any standard SIM microscope without hardware modifications.
许多细胞过程,包括细胞分裂、发育和细胞迁移,都需要细胞表面受体介导的空间和时间协调的力。基于核酸的分子张力探针可以使人们能够可视化这些受体施加的皮牛顿(pN)力。在此技术的基础上,我们最近开发了分子力显微镜(MFM),该显微镜使用荧光偏振来以衍射极限分辨率(约 250nm)映射受体力的方向。在这里,我们表明结构光照明显微镜(SIM),一种超分辨率技术,可用于执行超分辨率 MFM。使用 SIM-MFM,我们生成了细胞施加的 pN 牵引力的大小和方向的最高分辨率图。我们应用 SIM-MFM 来绘制血小板和成纤维细胞整合素力以及 T 细胞受体力。使用 SIM-MFM,我们表明血小板牵引力的定向发生在比粘附更长的时间尺度上。重要的是,SIM-MFM 可以在没有硬件修改的情况下在任何标准的 SIM 显微镜上实现。