Suppr超能文献

人工智能辅助结直肠肿瘤检测在临床应用中的影响:一项大规模前瞻性、倾向评分匹配研究(附视频)。

Impact of the clinical use of artificial intelligence-assisted neoplasia detection for colonoscopy: a large-scale prospective, propensity score-matched study (with video).

机构信息

Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan.

Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan; Clinical Effectiveness Research Group, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway.

出版信息

Gastrointest Endosc. 2022 Jan;95(1):155-163. doi: 10.1016/j.gie.2021.07.022. Epub 2021 Aug 2.

Abstract

BACKGROUND AND AIMS

Recently, the use of computer-aided detection (CADe) for colonoscopy has been investigated to improve the adenoma detection rate (ADR). We aimed to assess the efficacy of a regulatory-approved CADe in a large-scale study with high numbers of patients and endoscopists.

METHODS

This was a propensity score-matched prospective study that took place at a university hospital between July 2020 and December 2020. We recruited patients aged ≥20 years who were scheduled for colonoscopy. Patients with polyposis, inflammatory bowel disease, or incomplete colonoscopy were excluded. We used a regulatory-approved CADe system and conducted a propensity score matching-based comparison of the ADR between patients examined with and without CADe as the primary outcome.

RESULTS

During the study period, 2261 patients underwent colonoscopy with the CADe system or routine colonoscopy, and 172 patients were excluded in accordance with the exclusion criteria. Thirty endoscopists (9 nonexperts and 21 experts) were involved in this study. Propensity score matching was conducted using 5 factors, resulting in 1836 patients included in the analysis (918 patients in each group). The ADR was significantly higher in the CADe group than in the control group (26.4% vs 19.9%, respectively; relative risk, 1.32; 95% confidence interval, 1.12-1.57); however, there was no significant increase in the advanced neoplasia detection rate (3.7% vs 2.9%, respectively).

CONCLUSIONS

The use of the CADe system for colonoscopy significantly increased the ADR in a large-scale prospective study including 30 endoscopists (Clinical trial registration number: UMIN000040677.).

摘要

背景和目的

最近,人们研究了计算机辅助检测(CADe)在结肠镜检查中的应用,以提高腺瘤检出率(ADR)。我们旨在评估一种经过监管部门批准的 CADe 在一项大规模研究中的效果,该研究纳入了大量患者和内镜医生。

方法

这是一项在 2020 年 7 月至 12 月在一所大学医院进行的倾向评分匹配的前瞻性研究。我们招募了年龄≥20 岁且计划接受结肠镜检查的患者。排除有息肉病、炎症性肠病或结肠镜检查不完全的患者。我们使用了一种经过监管部门批准的 CADe 系统,并进行了倾向评分匹配的对比分析,以评估使用和不使用 CADe 时的 ADR 差异,这是主要结局。

结果

在研究期间,2261 例患者接受了 CADe 系统或常规结肠镜检查,根据排除标准排除了 172 例患者。30 名内镜医生(9 名非专家和 21 名专家)参与了本研究。使用 5 个因素进行了倾向评分匹配,最终纳入 1836 例患者进行分析(每组 918 例)。CADe 组的 ADR 显著高于对照组(分别为 26.4%和 19.9%,相对风险为 1.32;95%置信区间为 1.12-1.57);然而,高级别肿瘤检出率没有显著增加(分别为 3.7%和 2.9%)。

结论

在一项纳入 30 名内镜医生的大规模前瞻性研究中,使用 CADe 系统进行结肠镜检查显著提高了 ADR(临床试验注册号:UMIN000040677)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验