From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri.
From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
AJNR Am J Neuroradiol. 2021 Oct;42(10):1783-1789. doi: 10.3174/ajnr.A7244. Epub 2021 Aug 5.
The hippocampus is a frequent focus of quantitative neuroimaging research, and structural hippocampal alterations are related to multiple neurocognitive disorders. An increasing number of neuroimaging studies are focusing on hippocampal subfield regional involvement in these disorders using various automated segmentation approaches. Direct comparisons among these approaches are limited. The purpose of this study was to compare the agreement between two automated hippocampal segmentation algorithms in an adult population.
We compared the results of 2 automated segmentation algorithms for hippocampal subfields (FreeSurfer v6.0 and volBrain) within a single imaging data set from adults ( = 176, 89 women) across a wide age range (20-79 years). Brain MR imaging was acquired on a single 3T scanner as part of the IXI Brain Development Dataset and included T1- and T2-weighted MR images. We also examined subfield volumetric differences related to age and sex and the impact of different intracranial volume and total hippocampal volume normalization methods.
Estimated intracranial volume and total hippocampal volume of both protocols were strongly correlated ( = 0.93 and 0.9, respectively; both < .001). Hippocampal subfield volumes were correlated (ranging from = 0.42 for the subiculum to = 0.78 for the cornu ammonis [CA]1, all < .001). However, absolute volumes were significantly different between protocols. volBrain produced larger CA1 and CA4-dentate gyrus and smaller CA2-CA3 and subiculum volumes compared with FreeSurfer v6.0. Regional age- and sex-related differences in subfield volumes were qualitatively and quantitatively different depending on segmentation protocol and intracranial volume/total hippocampal volume normalization method.
The hippocampal subfield volume relationship to demographic factors and disease states should undergo nuanced interpretation, especially when considering different segmentation protocols.
海马体是定量神经影像学研究的常见焦点,结构海马体的改变与多种神经认知障碍有关。越来越多的神经影像学研究使用各种自动分割方法,关注这些疾病中海马亚区的区域受累情况。这些方法之间的直接比较有限。本研究的目的是比较两种自动海马体分割算法在成人人群中的一致性。
我们比较了两种自动海马亚区分割算法(FreeSurfer v6.0 和 volBrain)在一个成人(年龄范围 20-79 岁,共 176 人,89 名女性)的单一成像数据集内的结果。脑部 MRI 是作为 IXI 脑发育数据集的一部分在单个 3T 扫描仪上获得的,包括 T1 和 T2 加权 MRI 图像。我们还研究了与年龄和性别相关的亚区体积差异,以及不同的颅内体积和总海马体积归一化方法的影响。
两种方案的估计颅内体积和总海马体积均高度相关(r 值分别为 0.93 和 0.9,均<0.001)。海马亚区体积呈正相关(范围从侧脑室的 r = 0.42 到 CA1 的 r = 0.78,均<0.001)。然而,两种方案的绝对体积存在显著差异。与 FreeSurfer v6.0 相比,volBrain 产生的 CA1 和 CA4-齿状回体积较大,而 CA2-CA3 和侧脑室体积较小。基于分割方案和颅内体积/总海马体积归一化方法的不同,亚区体积的年龄和性别相关差异在定性和定量上均有所不同。
在考虑不同分割方案时,特别是在考虑不同的分割方案时,应更细致地解释海马亚区体积与人口统计学因素和疾病状态的关系。