Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Commun. 2021 Aug 5;12(1):4731. doi: 10.1038/s41467-021-24946-4.
Electrodermal devices that capture the physiological response of skin are crucial for monitoring vital signals, but they often require convoluted layered designs with either electronic or ionic active materials relying on complicated synthesis procedures, encapsulation, and packaging techniques. Here, we report that the ionic transport in living systems can provide a simple mode of iontronic sensing and bypass the need of artificial ionic materials. A simple skin-electrode mechanosensing structure (SEMS) is constructed, exhibiting high pressure-resolution and spatial-resolution, being capable of feeling touch and detecting weak physiological signals such as fingertip pulse under different skin humidity. Our mechanical analysis reveals the critical role of instability in high-aspect-ratio microstructures on sensing. We further demonstrate pressure mapping with millimeter-spatial-resolution using a fully textile SEMS-based glove. The simplicity and reliability of SEMS hold great promise of diverse healthcare applications, such as pulse detection and recovering the sensory capability in patients with tactile dysfunction.
用于监测生命信号的皮肤生理反应电测设备对于捕捉生命信号至关重要,但它们通常需要采用复杂的分层设计,使用电子或离子活性材料,这些材料依赖于复杂的合成程序、封装和包装技术。在这里,我们报告称,活体系统中的离子传输可以提供一种简单的离子电子感应模式,从而无需使用人造离子材料。我们构建了一种简单的皮肤-电极机械感应结构(SEMS),具有高压力分辨率和空间分辨率,能够感知触摸,并在不同皮肤湿度下检测指尖脉搏等微弱的生理信号。我们的机械分析揭示了在感应过程中高纵横比微结构不稳定性的关键作用。我们进一步使用基于全纺织 SEMS 的手套展示了具有毫米空间分辨率的压力映射。SEMS 的简单性和可靠性有望在各种医疗保健应用中得到应用,例如脉搏检测以及恢复触觉功能障碍患者的感知能力。