Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel.
Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
Bioinformatics. 2021 Nov 5;37(21):3796-3804. doi: 10.1093/bioinformatics/btab569.
Tumour heterogeneity is being increasingly recognized as an important characteristic of cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data hold the potential to further our understanding of tumour heterogeneity and its implications. However, existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of spatial molecular biology.
We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal distribution, therefore lending itself to efficient statistical assessment and inference. We first demonstrate that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA to analyze heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x Genomics and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies to 3D spatial data using brain MRI. In spatial RNA sequencing, we use a known combination of molecular traits to assert that HTA aligns with the expected outcome for this combination. We also show that HTA captures immune-cell infiltration at multiple resolutions. In digital pathology, we show how HTA can be used in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor survival. In brain MRI, we show that HTA differentiates between normal ageing, Alzheimer's disease and two tumours. HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains, including GIS.
Python package and source code are available at: https://github.com/alonalj/hta.
Supplementary data are available at Bioinformatics online.
肿瘤异质性正日益被视为癌症的一个重要特征,也是预后和治疗结果的决定因素。新兴的空间转录组学数据有可能进一步加深我们对肿瘤异质性及其影响的理解。然而,现有的统计工具在空间分子生物学的复杂环境中还不够强大,无法捕捉异质性。
我们提供了一种统计解决方案,即 HeTerogeneity Average 指数(HTA),专门用于处理空间转录组学的多变量性质。我们证明了 HTA 具有近似正态分布,因此适用于高效的统计评估和推断。我们首先证明 HTA 可以准确反映模拟数据的异质性水平。然后,我们使用 HTA 分析了两个癌症空间转录组数据集的异质性:10x Genomics 的空间 RNA 测序和从 H&E 推断的空间转录组学。最后,我们证明 HTA 也适用于使用脑 MRI 的 3D 空间数据。在空间 RNA 测序中,我们使用已知的分子特征组合来断言 HTA 与该组合的预期结果一致。我们还表明,HTA 可以捕获多种分辨率的免疫细胞浸润。在数字病理学中,我们展示了如何在生存分析中使用 HTA,并表明高水平的异质性可能与较差的生存相关。在脑 MRI 中,我们展示了 HTA 如何区分正常老化、阿尔茨海默病和两种肿瘤。HTA 还超越了分子生物学和医学影像学,可应用于许多领域,包括 GIS。
Python 包和源代码可在 https://github.com/alonalj/hta 获得。
补充数据可在生物信息学在线获得。