Suppr超能文献

用于模拟肿瘤免疫相互作用和检查点抑制剂免疫治疗效果的空间定量系统药理学平台spQSP-IO

A Spatial Quantitative Systems Pharmacology Platform spQSP-IO for Simulations of Tumor-Immune Interactions and Effects of Checkpoint Inhibitor Immunotherapy.

作者信息

Gong Chang, Ruiz-Martinez Alvaro, Kimko Holly, Popel Aleksander S

机构信息

Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.

Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD 20878, USA.

出版信息

Cancers (Basel). 2021 Jul 26;13(15):3751. doi: 10.3390/cancers13153751.

Abstract

Quantitative systems pharmacology (QSP) models have become increasingly common in fundamental mechanistic studies and drug discovery in both academic and industrial environments. With imaging techniques widely adopted and other spatial quantification of tumor such as spatial transcriptomics gaining traction, it is crucial that these data reflecting tumor spatial heterogeneity be utilized to inform the QSP models to enhance their predictive power. We developed a hybrid computational model platform, spQSP-IO, to extend QSP models of immuno-oncology with spatially resolved agent-based models (ABM), combining their powers to track whole patient-scale dynamics and recapitulate the emergent spatial heterogeneity in the tumor. Using a model of non-small-cell lung cancer developed based on this platform, we studied the role of the tumor microenvironment and cancer-immune cell interactions in tumor development and applied anti-PD-1 treatment to virtual patients and studied how the spatial distribution of cells changes during tumor growth in response to the immune checkpoint inhibition treatment. Using parameter sensitivity analysis and biomarker analysis, we are able to identify mechanisms and pretreatment measurements correlated with treatment efficacy. By incorporating spatial data that highlight both heterogeneity in tumors and variability among individual patients, spQSP-IO models can extend the QSP framework and further advance virtual clinical trials.

摘要

定量系统药理学(QSP)模型在学术和工业环境中的基础机制研究和药物发现中越来越普遍。随着成像技术的广泛应用以及其他肿瘤空间量化方法(如空间转录组学)的日益受到关注,利用这些反映肿瘤空间异质性的数据来为QSP模型提供信息以增强其预测能力至关重要。我们开发了一个混合计算模型平台spQSP-IO,用基于空间解析的基于主体的模型(ABM)扩展免疫肿瘤学的QSP模型,结合它们的能力来追踪全患者规模的动态变化并概括肿瘤中出现的空间异质性。利用基于该平台开发的非小细胞肺癌模型,我们研究了肿瘤微环境和癌症免疫细胞相互作用在肿瘤发展中的作用,并将抗PD-1治疗应用于虚拟患者,研究了在免疫检查点抑制治疗下肿瘤生长过程中细胞的空间分布如何变化。通过参数敏感性分析和生物标志物分析,我们能够识别与治疗疗效相关的机制和治疗前测量指标。通过纳入突出肿瘤异质性和个体患者间变异性的空间数据,spQSP-IO模型可以扩展QSP框架并进一步推进虚拟临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e52/8345161/c85119802c9a/cancers-13-03751-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验