Zhang Shuming, Gong Chang, Ruiz-Martinez Alvaro, Wang Hanwen, Davis-Marcisak Emily, Deshpande Atul, Popel Aleksander S, Fertig Elana J
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
Immunoinformatics (Amst). 2021 Oct;1-2. doi: 10.1016/j.immuno.2021.100002. Epub 2021 Jul 24.
Response to cancer immunotherapies depends on the complex and dynamic interactions between T cell recognition and killing of cancer cells that are counteracted through immunosuppressive pathways in the tumor microenvironment. Therefore, while measurements such as tumor mutational burden provide biomarkers to select patients for immunotherapy, they neither universally predict patient response nor implicate the mechanisms that underlie immunotherapy resistance. Recent advances in single-cell RNA sequencing technology measure cellular heterogeneity within cells of an individual tumor but have yet to realize the promise of predictive oncology. In addition to data, mechanistic multiscale computational models are developed to predict treatment response. Incorporating single-cell data from tumors to parameterize these computational models provides deeper insights into prediction of clinical outcome in individual patients. Here, we integrate whole-exome sequencing and scRNA-seq data from Triple-Negative Breast Cancer patients to model neoantigen burden in tumor cells as input to a spatial Quantitative System Pharmacology model. The model comprises a four-compartmental Quantitative System Pharmacology sub-model to represent a whole patient and a spatial agent-based sub-model to represent tumor volumes at the cellular scale. We use the high-throughput single-cell data to model the role of antigen burden and heterogeneity relative to the tumor microenvironment composition on predicted immunotherapy response. We demonstrate how this integrated modeling and single-cell analysis framework can be used to relate neoantigen heterogeneity to immunotherapy treatment outcomes. Our results demonstrate feasibility of merging single-cell data to initialize cell states in multiscale computational models such as the spQSP for personalized prediction of clinical outcomes to immunotherapy.
对癌症免疫疗法的反应取决于T细胞识别和杀伤癌细胞之间复杂而动态的相互作用,而肿瘤微环境中的免疫抑制途径会抵消这种作用。因此,虽然诸如肿瘤突变负荷等测量方法可提供生物标志物以选择接受免疫疗法的患者,但它们既不能普遍预测患者的反应,也不能揭示免疫疗法耐药性的潜在机制。单细胞RNA测序技术的最新进展可测量单个肿瘤细胞内的细胞异质性,但尚未实现肿瘤预测学的前景。除了数据之外,还开发了多尺度机制计算模型来预测治疗反应。将肿瘤的单细胞数据纳入这些计算模型进行参数化,可更深入地了解个体患者临床结果的预测。在此,我们整合三阴性乳腺癌患者的全外显子组测序和scRNA-seq数据,将肿瘤细胞中的新抗原负荷建模为空间定量系统药理学模型的输入。该模型包括一个四室定量系统药理学子模型来代表整个患者,以及一个基于空间代理的子模型来代表细胞尺度上的肿瘤体积。我们使用高通量单细胞数据来模拟抗原负荷和异质性相对于肿瘤微环境组成对预测免疫疗法反应的作用。我们展示了如何使用这种整合建模和单细胞分析框架将新抗原异质性与免疫疗法治疗结果联系起来。我们的结果证明了在多尺度计算模型(如用于免疫疗法临床结果个性化预测的spQSP)中合并单细胞数据以初始化细胞状态的可行性。