Suppr超能文献

通过将基于空间的 agent 模型与全患者定量系统药理学模型进行耦合,模拟肿瘤生长和对免疫疗法的反应。

Simulations of tumor growth and response to immunotherapy by coupling a spatial agent-based model with a whole-patient quantitative systems pharmacology model.

机构信息

Department of Biomedical Engineering, Johns Hopkins, University School of Medicine, Baltimore, Maryland, United States of America.

Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2022 Jul 22;18(7):e1010254. doi: 10.1371/journal.pcbi.1010254. eCollection 2022 Jul.

Abstract

Quantitative systems pharmacology (QSP) models and spatial agent-based models (ABM) are powerful and efficient approaches for the analysis of biological systems and for clinical applications. Although QSP models are becoming essential in discovering predictive biomarkers and developing combination therapies through in silico virtual trials, they are inadequate to capture the spatial heterogeneity and randomness that characterize complex biological systems, and specifically the tumor microenvironment. Here, we extend our recently developed spatial QSP (spQSP) model to analyze tumor growth dynamics and its response to immunotherapy at different spatio-temporal scales. In the model, the tumor spatial dynamics is governed by the ABM, coupled to the QSP model, which includes the following compartments: central (blood system), tumor, tumor-draining lymph node, and peripheral (the rest of the organs and tissues). A dynamic recruitment of T cells and myeloid-derived suppressor cells (MDSC) from the QSP central compartment has been implemented as a function of the spatial distribution of cancer cells. The proposed QSP-ABM coupling methodology enables the spQSP model to perform as a coarse-grained model at the whole-tumor scale and as an agent-based model at the regions of interest (ROIs) scale. Thus, we exploit the spQSP model potential to characterize tumor growth, identify T cell hotspots, and perform qualitative and quantitative descriptions of cell density profiles at the invasive front of the tumor. Additionally, we analyze the effects of immunotherapy at both whole-tumor and ROI scales under different tumor growth and immune response conditions. A digital pathology computational analysis of triple-negative breast cancer specimens is used as a guide for modeling the immuno-architecture of the invasive front.

摘要

定量系统药理学(QSP)模型和空间基于代理的模型(ABM)是分析生物系统和进行临床应用的强大而有效的方法。尽管 QSP 模型在通过计算机虚拟试验发现预测性生物标志物和开发联合疗法方面变得至关重要,但它们不足以捕捉到复杂生物系统,特别是肿瘤微环境的空间异质性和随机性。在这里,我们扩展了我们最近开发的空间 QSP(spQSP)模型,以分析不同时空尺度下肿瘤生长动力学及其对免疫疗法的反应。在该模型中,肿瘤的空间动力学由 ABM 控制,与包括以下隔室的 QSP 模型耦合:中央(血液系统)、肿瘤、肿瘤引流淋巴结和外周(其余器官和组织)。已经实现了 T 细胞和髓系来源的抑制细胞(MDSC)从 QSP 中央隔室的动态募集,作为癌细胞空间分布的函数。所提出的 QSP-ABM 耦合方法使 spQSP 模型能够在整个肿瘤尺度上作为粗粒度模型,并且在感兴趣区域(ROI)尺度上作为基于代理的模型。因此,我们利用 spQSP 模型的潜力来描述肿瘤生长、识别 T 细胞热点,并对肿瘤侵袭前沿的细胞密度分布进行定性和定量描述。此外,我们还在不同的肿瘤生长和免疫反应条件下分析了在整个肿瘤和 ROI 尺度上免疫疗法的效果。三阴性乳腺癌标本的数字病理学计算分析被用作建模侵袭前沿免疫结构的指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9048/9348712/a43dfa0fec2f/pcbi.1010254.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验