Suppr超能文献

基于可解释的 DCNN 的 COVID-19 肺炎检测的胸部 X 射线图像分析与分类。

Explainable DCNN based chest X-ray image analysis and classification for COVID-19 pneumonia detection.

机构信息

School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China.

Counties Manukau District Health Board, Auckland, 1640, New Zealand.

出版信息

Sci Rep. 2021 Aug 9;11(1):16071. doi: 10.1038/s41598-021-95680-6.

Abstract

To speed up the discovery of COVID-19 disease mechanisms by X-ray images, this research developed a new diagnosis platform using a deep convolutional neural network (DCNN) that is able to assist radiologists with diagnosis by distinguishing COVID-19 pneumonia from non-COVID-19 pneumonia in patients based on chest X-ray classification and analysis. Such a tool can save time in interpreting chest X-rays and increase the accuracy and thereby enhance our medical capacity for the detection and diagnosis of COVID-19. The explainable method is also used in the DCNN to select instances of the X-ray dataset images to explain the behavior of training-learning models to achieve higher prediction accuracy. The average accuracy of our method is above 96%, which can replace manual reading and has the potential to be applied to large-scale rapid screening of COVID-9 for widely use cases.

摘要

为了通过 X 射线图像加速 COVID-19 疾病机制的发现,本研究开发了一个新的诊断平台,使用深度卷积神经网络(DCNN),能够通过对胸部 X 射线分类和分析,根据 COVID-19 肺炎和非 COVID-19 肺炎来协助放射科医生进行诊断。这种工具可以节省解释胸部 X 射线的时间,并提高准确性,从而增强我们对 COVID-19 的检测和诊断能力。该可解释方法还用于 DCNN 中,以选择 X 射线数据集图像的实例来解释训练学习模型的行为,以实现更高的预测准确性。我们的方法的平均准确率在 96%以上,可以替代人工阅读,并有可能应用于 COVID-9 的大规模快速筛查,以便广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5222/8352869/f0494c18a4bc/41598_2021_95680_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验