验证专家系统增强的深度学习算法在胸部 X 光片上自动筛查 COVID-肺炎的性能。

Validation of expert system enhanced deep learning algorithm for automated screening for COVID-Pneumonia on chest X-rays.

机构信息

CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan, 333031, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

出版信息

Sci Rep. 2021 Dec 1;11(1):23210. doi: 10.1038/s41598-021-02003-w.

Abstract

SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.

摘要

SARS-CoV2 大流行暴露了基于人工智能的医学成像系统的局限性。在大流行早期,由于缺乏足够的训练数据,基于 X 射线数据的 COVID-19 诊断无法有效应用深度学习(DL)解决方案。在这里,我们针对现有文献和算法中缺乏初始训练数据的问题,描述了 CovBaseAI,这是一种使用三个 DL 模型和一个专家决策系统(EDS)的可解释工具,用于 COVID-19 肺炎诊断,完全基于 COVID-19 之前的数据集进行训练。CovBaseAI 的性能和可解释性主要在两个独立的数据集上进行验证。首先,从印度检疫中心随机选择 1401 例 CxR,以评估其在排除需要更高护理的放射学 COVID-19 方面的有效性。其次,在 curated 数据集上,包括 434 例 RT-PCR 阳性病例和 471 例非 COVID/正常历史扫描,以评估在高级医疗环境中的性能。CovBaseAI 在检疫中心数据中的准确率为 87%,阴性预测值为 98%。然而,以 RT-PCR/放射科医生意见为金标准时,敏感性为 0.66-0.90。这项工作提供了关于使用 EDS 与 DL 方法以及算法在有信心预测 COVID-19 肺炎的同时加强既定学习的新见解;基于 RT-PCR 的基准测试可能不能作为放射学诊断的可靠金标准。这些工具可以为 COVID-19 肺炎的多模态高通量筛查和转诊铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4495/8636645/bd26c7aa7aa5/41598_2021_2003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索