Suppr超能文献

评估德国鸢尾的抗旱性和转录组分析,以鉴定抗旱相关基因。

Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica.

机构信息

College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China.

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.

出版信息

Sci Rep. 2021 Aug 11;11(1):16308. doi: 10.1038/s41598-021-95633-z.

Abstract

Iris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: 'Little Dream' > 'Music Box' > 'X'Brassie' > 'Blood Stone' > 'Cherry Garden' > 'Memory of Harvest' > 'Immortality' > 'White and Gold' > 'Tantara' > 'Clarence'. Using the high-drought-resistant cultivar 'Little Dream' as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar 'Little Dream' under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.

摘要

德国鸢尾,一种具有极高观赏价值的物种,在鸢尾属物种中表现出最强的耐旱性,但对其耐旱性的分子机制尚未进行评估。为了研究高耐旱性德国鸢尾在干旱胁迫下的基因表达谱变化,将 10 个具有优良特性的品种纳入盆栽实验,在干旱胁迫条件下,比较了这些品种叶片中叶绿素(Chl)含量、质膜相对渗透率(RP)、超氧化物歧化酶(SOD)、丙二醛(MDA)、游离脯氨酸(Pro)和可溶性蛋白(SP)水平的变化。根据它们的耐旱性能,这 10 个品种的排序如下:“Little Dream”>“Music Box”>“XBrassie”>“Blood Stone”>“Cherry Garden”>“Memory of Harvest”>“Immortality”>“White and Gold”>“Tantara”>“Clarence”。使用高耐旱性品种“Little Dream”作为实验材料,从叶片和根状茎中提取的 cDNA 文库在 20%聚乙二醇(PEG)-6000 处理 0、6、12、24 和 48 h 后,用于模拟干旱环境,使用 Illumina 测序平台进行测序。通过对转录组数据的层次聚类分析,我们获得了 1976033 个转录本和 743982 个单基因(平均长度为 716 bp)。将这些基因与 Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG 和基因本体(GO)数据库进行功能注释比较,并用 DESeq2 比较 20%PEG-6000 胁迫处理(6、12、24 和 48 h)和对照组(0 h)叶片和根状茎中基因的表达水平。分别从叶片和根状茎中获得了 7849 和 24127 个差异表达基因(DEGs)。GO 和 KEGG 富集分析表明,DEGs 显著富集了核糖体、光合作用、激素信号转导、淀粉和蔗糖代谢、次生代谢物合成等途径,以及热休克蛋白(HSPs)、转录因子(TFs)和活性氧清除剂等相关基因。综上所述,我们对德国鸢尾品种“Little Dream”进行了干旱胁迫下的首次转录组测序分析,产生了大量的遗传信息。这项研究为进一步探索德国鸢尾对干旱胁迫的响应分子机制奠定了基础,并为耐旱植物的选育提供了有价值的遗传资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5e/8358056/29eace48e35a/41598_2021_95633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验