Suppr超能文献

社会人口统计学特征决定了德国 Corona 接触者追踪应用程序的下载和使用情况——COSMO 调查结果。

Sociodemographic characteristics determine download and use of a Corona contact tracing app in Germany-Results of the COSMO surveys.

机构信息

Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians University München, München, Germany.

Media and Communication Science, University of Erfurt, Erfurt, Germany.

出版信息

PLoS One. 2021 Sep 2;16(9):e0256660. doi: 10.1371/journal.pone.0256660. eCollection 2021.

Abstract

During the SARS-CoV-2 pandemic mobile health applications indicating risks emerging from close contacts to infected persons have a large potential to interrupt transmission chains by automating contact tracing. Since its dispatch in Germany in June 2020 the Corona Warn App has been downloaded on 25.7 Mio smartphones by February 2021. To understand barriers to download and user fidelity in different sociodemographic groups we analysed data from five consecutive cross-sectional waves of the COVID-19 Snapshot Monitoring survey from June to August 2020. Questions on the Corona Warn App included information on download, use, functionality, usability, and consequences of the app. Of the 4,960 participants (mean age 45.9 years, standard deviation 16.0, 50.4% female), 36.5% had downloaded the Corona Warn App. Adjusted analysis found that those who had downloaded the app were less likely to be female (Adjusted Odds Ratio for men 1.16 95% Confidence Interval [1.02;1.33]), less likely to be younger (Adjusted Odds Ratio for age 18 to 39 0.47 [0.32;0.59] Adjusted Odds Ratio for age 40 to 64 0.57 [0.46;0.69]), less likely to have a lower household income (AOR 0.55 [0.43;0.69]), and more likely to live in one of the Western federal states including Berlin (AOR 2.31 [1.90;2.82]). Willingness to disclose a positive test result and trust in data protection compliance of the Corona Warn App was significantly higher in older adults. Willingness to disclose also increased with higher educational degrees and income. This study supports the hypothesis of a digital divide that separates users and non-users of the Corona Warn App along a well-known health gap of education, income, and region.

摘要

在 SARS-CoV-2 大流行期间,提示与感染者密切接触风险的移动健康应用程序具有通过自动追踪接触者来中断传播链的巨大潜力。自 2020 年 6 月在德国推出以来,截至 2021 年 2 月,Corona Warn 应用程序已在 2570 万部智能手机上下载。为了了解不同社会人口群组下载和用户使用的障碍,我们分析了 2020 年 6 月至 8 月期间连续五次 COVID-19 快照监测调查的横断面数据。Corona Warn 应用程序的问题包括下载、使用、功能、可用性以及该应用程序的后果。在 4960 名参与者中(平均年龄 45.9 岁,标准差 16.0,50.4%为女性),有 36.5%下载了 Corona Warn 应用程序。调整分析发现,下载该应用程序的人女性比例较低(男性调整后的优势比为 1.16,95%置信区间[1.02;1.33]),年龄在 18 至 39 岁的调整后的优势比为 0.47(0.32;0.59),年龄在 40 至 64 岁的调整后的优势比为 0.57(0.46;0.69),家庭收入较低的调整后的优势比为 0.55(0.43;0.69),居住在包括柏林在内的西部联邦州的调整后的优势比为 2.31(1.90;2.82)。年龄较大的成年人对披露阳性检测结果的意愿和对 Corona Warn 应用程序数据保护合规性的信任明显更高。随着教育程度和收入的提高,披露的意愿也有所增加。这项研究支持了数字鸿沟的假设,即 Corona Warn 应用程序的用户和非用户沿着众所周知的教育、收入和地区健康差距而分离。

相似文献

引用本文的文献

本文引用的文献

3
Tracking and promoting the usage of a COVID-19 contact tracing app.追踪和推广使用 COVID-19 接触者追踪应用程序。
Nat Hum Behav. 2021 Feb;5(2):247-255. doi: 10.1038/s41562-020-01044-x. Epub 2021 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验