Suppr超能文献

使用深度学习卷积神经网络在F-FDG PET/CT上对套细胞淋巴瘤进行计算机辅助检测。

Computer-aided detection of mantle cell lymphoma on F-FDG PET/CT using a deep learning convolutional neural network.

作者信息

Zhou Zijian, Jain Preetesh, Lu Yang, Macapinlac Homer, Wang Michael L, Son Jong Bum, Pagel Mark D, Xu Guofan, Ma Jingfei

机构信息

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center Houston, TX, USA.

Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center Houston, TX, USA.

出版信息

Am J Nucl Med Mol Imaging. 2021 Aug 15;11(4):260-270. eCollection 2021.

Abstract

F-FDG PET/CT can provide quantitative characterization with prognostic value for mantle cell lymphoma (MCL). However, detection of MCL is performed manually, which is labor intensive and not a part of the routine clinical practice. This study investigates a deep learning convolutional neural network (DLCNN) for computer-aided detection of MCL on F-FDG PET/CT. We retrospectively analyzed 142 baseline F-FDG PET/CT scans of biopsy-confirmed MCL acquired between May 2007 and October 2018. Of the 142 scans, 110 were from our institution and 32 were from outside institutions. An Xception-based U-Net was constructed to classify each pixel of the PET/CT images as MCL or not. The network was first trained and tested on the within-institution scans by applying five-fold cross-validation. Sensitivity and false positives (FPs) per patient were calculated for network evaluation. The network was then tested on the outside-institution scans, which were excluded from network training. For the 110 within-institution patients (85 male; median age, 58 [range: 39-84] years), the network achieved an overall median sensitivity of 88% (interquartile range [IQR]: 25%) with 15 (IQR: 12) FPs/patient. Sensitivity was dependent on lesion size and SUV but not on lesion location. For the 32 outside-institution patients (24 male; median age, 59 [range: 40-67] years), the network achieved a median sensitivity of 84% (IQR: 24%) with 14 (IQR: 10) FPs/patient. No significant performance difference was found between the within and outside institution scans. Therefore, DLCNN can potentially help with MCL detection on F-FDG PET/CT with high sensitivity and limited FPs.

摘要

氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)可为套细胞淋巴瘤(MCL)提供具有预后价值的定量特征。然而,MCL的检测是手动进行的,这劳动强度大,且并非常规临床实践的一部分。本研究探讨了一种深度学习卷积神经网络(DLCNN)用于在F-FDG PET/CT上对MCL进行计算机辅助检测。我们回顾性分析了2007年5月至2018年10月期间获取的142例经活检证实的MCL患者的基线F-FDG PET/CT扫描。在这142次扫描中,110次来自我们机构,32次来自外部机构。构建了一个基于Xception的U-Net,将PET/CT图像的每个像素分类为是否为MCL。该网络首先通过应用五折交叉验证在机构内部扫描上进行训练和测试。计算敏感性和每位患者的假阳性(FP)数用于网络评估。然后该网络在排除于网络训练之外的外部机构扫描上进行测试。对于110例机构内部患者(85例男性;中位年龄58岁[范围:39 - 84岁]),该网络实现了总体中位敏感性为88%(四分位间距[IQR]:25%),每位患者有15个(IQR:12个)FP。敏感性取决于病变大小和标准化摄取值(SUV),但不取决于病变位置。对于32例外部机构患者(24例男性;中位年龄59岁[范围:40 - 67岁]),该网络实现了中位敏感性为84%(IQR:24%),每位患者有14个(IQR:10个)FP。在机构内部和外部扫描之间未发现显著的性能差异。因此,DLCNN可能有助于在F-FDG PET/CT上以高敏感性和有限的FP数检测MCL。

相似文献

2
Deep learning convolutional neural network (DLCNN): unleashing the potential of F-FDG PET/CT in lymphoma.
Am J Nucl Med Mol Imaging. 2021 Aug 15;11(4):327-331. eCollection 2021.
3
F-FDG PET/CT Uptake Classification in Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks.
Radiology. 2020 Feb;294(2):445-452. doi: 10.1148/radiol.2019191114. Epub 2019 Dec 10.
4
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.
8
Validation of Deep Learning-based Augmentation for Reduced F-FDG Dose for PET/MRI in Children and Young Adults with Lymphoma.
Radiol Artif Intell. 2021 Oct 6;3(6):e200232. doi: 10.1148/ryai.2021200232. eCollection 2021 Nov.
10
Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in mantle cell lymphoma.
Ann Nucl Med. 2019 Jul;33(7):449-458. doi: 10.1007/s12149-019-01354-9. Epub 2019 Mar 30.

引用本文的文献

1
Recent advances in deep learning for lymphoma segmentation: Clinical applications and challenges.
Digit Health. 2025 Jul 28;11:20552076251362508. doi: 10.1177/20552076251362508. eCollection 2025 Jan-Dec.
4
Recent advances in imaging and artificial intelligence (AI) for quantitative assessment of multiple myeloma.
Am J Nucl Med Mol Imaging. 2024 Aug 25;14(4):208-229. doi: 10.62347/NLLV9295. eCollection 2024.
5
Artificial intelligence performance in detecting lymphoma from medical imaging: a systematic review and meta-analysis.
BMC Med Inform Decis Mak. 2024 Jan 8;24(1):13. doi: 10.1186/s12911-023-02397-9.
6
Deep learning for [F]fluorodeoxyglucose-PET-CT classification in patients with lymphoma: a dual-centre retrospective analysis.
Lancet Digit Health. 2024 Feb;6(2):e114-e125. doi: 10.1016/S2589-7500(23)00203-0. Epub 2023 Dec 21.
7
Deep learning-based diagnosis of disease activity in patients with Graves' orbitopathy using orbital SPECT/CT.
Eur J Nucl Med Mol Imaging. 2023 Oct;50(12):3666-3674. doi: 10.1007/s00259-023-06312-2. Epub 2023 Jul 3.

本文引用的文献

2
MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging.
Radiother Oncol. 2020 Dec;153:189-196. doi: 10.1016/j.radonc.2020.09.016. Epub 2020 Sep 13.
3
Deep-Learning F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma.
J Nucl Med. 2021 Jan;62(1):30-36. doi: 10.2967/jnumed.120.242412. Epub 2020 Jun 12.
6
F-FDG PET/CT Uptake Classification in Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks.
Radiology. 2020 Feb;294(2):445-452. doi: 10.1148/radiol.2019191114. Epub 2019 Dec 10.
7
Prognostic value of FDG-PET in patients with mantle cell lymphoma: results from the LyMa-PET Project.
Haematologica. 2020 Jan;105(1):e33-e36. doi: 10.3324/haematol.2019.223016. Epub 2019 Aug 1.
8
Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management.
Am J Hematol. 2019 Jun;94(6):710-725. doi: 10.1002/ajh.25487. Epub 2019 Apr 19.
9
How to manage mantle cell lymphoma.
Leukemia. 2014 Nov;28(11):2117-30. doi: 10.1038/leu.2014.171. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验