Suppr超能文献

传感器驱动的老年人家庭探访检测系统:探索数字晚年抑郁标志物提取。

A Sensor-Driven Visit Detection System in Older Adults' Homes: Towards Digital Late-Life Depression Marker Extraction.

出版信息

IEEE J Biomed Health Inform. 2022 Apr;26(4):1560-1569. doi: 10.1109/JBHI.2021.3114595. Epub 2022 Apr 14.

Abstract

Modern sensor technology is increasingly used in older adults to not only provide additional safety but also to monitor health status, often by means of sensor derived digital measures or biomarkers. Social isolation is a known risk factor for late-life depression, and a potential component of social-isolation is the lack of home visits. Therefore, home visits may serve as a digital measure for social isolation and late-life depression. Late-life depression is a common mental and emotional disorder in the growing population of older adults. The disorder, if untreated, can significantly decrease quality of life and, amongst other effects, leads to increased mortality. Late-life depression often goes undiagnosed due to associated stigma and the incorrect assumption that it is a normal part of ageing. In this work, we propose a visit detection system that generalizes well to previously unseen apartments - which may differ largely in layout, sensor placement, and size from apartments found in the semi-annotated training dataset. We find that by using a self-training-based domain adaptation strategy, a robust system to extract home visit information can be built (ROC AUC = 0.773). We further show that the resulting visit information correlates well with the common geriatric depression scale screening tool ( ρ = -0.87, p = 0.001), providing further support for the idea of utilizing the extracted information as a potential digital measure or even as a digital biomarker to monitor the risk of late-life depression.

摘要

现代传感器技术越来越多地被用于老年人,不仅提供额外的安全保障,还可以监测健康状况,通常是通过传感器衍生的数字测量值或生物标志物。社会隔离是老年期抑郁症的已知风险因素,而社会隔离的一个潜在组成部分是缺乏家访。因此,家访可以作为社会隔离和老年期抑郁症的数字测量值。老年期抑郁症是老年人群体中日益增长的常见心理和情感障碍。如果不加以治疗,这种疾病会显著降低生活质量,并且除其他影响外,还会导致死亡率增加。由于与老年期抑郁症相关的耻辱感以及错误地认为它是衰老的正常组成部分,因此这种疾病常常未被诊断出来。在这项工作中,我们提出了一种访问检测系统,该系统可以很好地推广到以前未见过的公寓中 - 这些公寓在布局、传感器放置和大小方面可能与半注释训练数据集中的公寓有很大的不同。我们发现,通过使用基于自我训练的域自适应策略,可以构建一个强大的系统来提取家访信息(ROC AUC = 0.773)。我们进一步表明,由此产生的访问信息与常见的老年抑郁量表筛查工具高度相关(ρ= -0.87,p= 0.001),这进一步支持了利用提取信息作为潜在的数字测量值甚至数字生物标志物来监测老年期抑郁症风险的想法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验