Suppr超能文献

评估出生后 3 天、15 天和 54 周时体脂肪的人体测量模型。

Anthropometric models to estimate fat mass at 3 days, 15 and 54 weeks.

机构信息

Division of Pediatric Endocrinology, Columbia University Irving Medical Center, New York, New York, USA.

Division of Endocrinology, Department of Medicine, New York Nutrition Obesity Research Center, Columbia University Irving Medical Center, New York, New York, USA.

出版信息

Pediatr Obes. 2022 Mar;17(3):e12855. doi: 10.1111/ijpo.12855. Epub 2021 Sep 24.

Abstract

BACKGROUND

Currently available infant body composition measurement methods are impractical for routine clinical use. The study developed anthropometric equations (AEs) to estimate fat mass (FM, kg) during the first year using air displacement plethysmography (PEA POD® Infant Body Composition System) and Infant quantitative magnetic resonance (Infant-QMR) as criterion methods.

METHODS

Multi-ethnic full-term infants (n = 191) were measured at 3 days, 15 and 54 weeks. Sex, race/ethnicity, gestational age, age (days), weight-kg (W), length-cm (L), head circumferences-cm (HC), skinfold thicknesses mm [triceps (TRI), thigh (THI), subscapular (SCP), and iliac (IL)], and FM by PEA POD® and Infant-QMR were collected. Stepwise linear regression determined the model that best predicted FM.

RESULTS

Weight, length, head circumference, and skinfolds of triceps, thigh, and subscapular, but not iliac, significantly predicted FM throughout infancy in both the Infant-QMR and PEA POD models. Sex had an interaction effect at 3 days and 15 weeks for both the models. The coefficient of determination [R ] and root mean square error were 0.87 (66 g) at 3 days, 0.92 (153 g) at 15 weeks, and 0.82 (278 g) at 54 weeks for the Infant-QMR models; 0.77 (80 g) at 3 days and 0.82 (195 g) at 15 weeks for the PEA POD models respectively.

CONCLUSIONS

Both PEA POD and Infant-QMR derived models predict FM using skinfolds, weight, head circumference, and length with acceptable R and residual patterns.

摘要

背景

目前可用的婴儿体成分测量方法在常规临床应用中并不实用。本研究使用空气置换体描仪(PEA POD®婴儿体成分系统)和婴儿定量磁共振(Infant-QMR)作为标准方法,开发了用于估计婴儿出生后第一年脂肪量(FM,kg)的人体测量方程(AE)。

方法

对 191 名多民族足月婴儿在出生后 3 天、15 周和 54 周时进行测量。收集了性别、种族/民族、胎龄、年龄(天)、体重(kg)、身长(cm)、头围(cm)、皮褶厚度(mm)[三头肌(TRI)、大腿(THI)、肩胛下(SCP)和髂骨(IL)]以及通过 PEA POD®和 Infant-QMR 测量的 FM。逐步线性回归确定了最佳预测 FM 的模型。

结果

体重、身长、头围和三头肌、大腿和肩胛下皮褶,但髂骨皮褶,在 Infant-QMR 和 PEA POD 模型中,均在婴儿期全程显著预测 FM。两种模型在出生后 3 天和 15 周时,性别均存在交互作用。婴儿 QMR 模型的决定系数[R ]和均方根误差分别为 3 天 0.87(66 g)、15 周 0.92(153 g)和 54 周 0.82(278 g);PEA POD 模型的 3 天分别为 0.77(80 g)和 15 周为 0.82(195 g)。

结论

PEA POD 和 Infant-QMR 衍生模型均使用皮褶、体重、头围和身长预测 FM,其 R 和残差模式具有可接受性。

相似文献

1
Anthropometric models to estimate fat mass at 3 days, 15 and 54 weeks.
Pediatr Obes. 2022 Mar;17(3):e12855. doi: 10.1111/ijpo.12855. Epub 2021 Sep 24.
2
Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography.
Br J Nutr. 2013 Apr 28;109(8):1528-37. doi: 10.1017/S0007114512003303. Epub 2012 Oct 11.
3
Evaluating body composition in infancy and childhood: A comparison between 4C, QMR, DXA, and ADP.
Pediatr Obes. 2020 Jun;15(6):e12617. doi: 10.1111/ijpo.12617. Epub 2020 Jan 27.
4
Anthropometry-based prediction of body composition in early infancy compared to air-displacement plethysmography.
Pediatr Obes. 2021 Nov;16(11):e12818. doi: 10.1111/ijpo.12818. Epub 2021 Jun 10.
6
An anthropometric model to estimate neonatal fat mass using air displacement plethysmography.
Nutr Metab (Lond). 2012 Mar 21;9:21. doi: 10.1186/1743-7075-9-21.
7
Skinfold-based-equations to assess longitudinal body composition in children from birth to age 5 years.
Clin Nutr. 2023 Jul;42(7):1213-1218. doi: 10.1016/j.clnu.2023.04.024. Epub 2023 Apr 29.
8
Fat mass estimation in neonates: anthropometric models compared with air displacement plethysmography.
Br J Nutr. 2019 Feb;121(3):285-290. doi: 10.1017/S0007114518003355. Epub 2018 Nov 16.
9
Body fat in Singaporean infants: development of body fat prediction equations in Asian newborns.
Eur J Clin Nutr. 2013 Sep;67(9):922-7. doi: 10.1038/ejcn.2013.69. Epub 2013 Apr 3.
10
Anthropometric and clinical correlates of fat mass in healthy term infants at 6 months of age.
BMC Pediatr. 2019 Feb 18;19(1):60. doi: 10.1186/s12887-019-1430-x.

本文引用的文献

2
Anthropometry-based prediction of body fat in infants from birth to 6 months: the Baby-bod study.
Eur J Clin Nutr. 2021 Apr;75(4):715-723. doi: 10.1038/s41430-020-00768-3. Epub 2020 Oct 14.
4
Increased Visceral Adipose Tissue Without Weight Retention at 59 Weeks Postpartum.
Obesity (Silver Spring). 2020 Mar;28(3):552-562. doi: 10.1002/oby.22736. Epub 2020 Feb 6.
5
Evaluating body composition in infancy and childhood: A comparison between 4C, QMR, DXA, and ADP.
Pediatr Obes. 2020 Jun;15(6):e12617. doi: 10.1111/ijpo.12617. Epub 2020 Jan 27.
7
Sex differences in infant body composition emerge in the first 5 months of life.
J Pediatr Endocrinol Metab. 2019 Nov 26;32(11):1235-1239. doi: 10.1515/jpem-2019-0243.
8
Fat mass estimation in neonates: anthropometric models compared with air displacement plethysmography.
Br J Nutr. 2019 Feb;121(3):285-290. doi: 10.1017/S0007114518003355. Epub 2018 Nov 16.
10
Which anthropometric measures best reflect neonatal adiposity?
Int J Obes (Lond). 2018 Mar;42(3):501-506. doi: 10.1038/ijo.2017.250. Epub 2017 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验