He Yizhou, Xu Liyifei, Yang Cheng, Guo Xiaowei, Li Shaorong
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
Nanomaterials (Basel). 2021 Sep 7;11(9):2321. doi: 10.3390/nano11092321.
In the last decade, perovskite solar cells have made a quantum leap in performance with the efficiency increasing from 3.8% to 25%. However, commercial perovskite solar cells have faced a major impediment due to toxicity and stability issues. Therefore, lead-free inorganic perovskites have been investigated in order to find substitute perovskites which can provide a high efficiency similar to lead-based perovskites. In recent studies, as a kind of lead-free inorganic perovskite material, CsCuSbCl has been demonstrated to possess impressive photoelectric properties and excellent environmental stability. Moreover, CsCuSbCl nanocrystals have smaller effective photo-generated carrier masses than bulk CsCuSbCl, which provides excellent carrier mobility. To date, there have been no reports about CsCuSbCl nanocrystals used for making solar cells. To explore the potential of CsCuSbCl nanocrystal solar cells, we propose a lead-free perovskite solar cell with the configuration of FTO/ETL/CsCuSbCl nanocrystals/HTL/Au using a solar cell capacitance simulator. Moreover, we numerically investigate the factors that affect the performance of the CsCuSbCl nanocrystal solar cell with the aim of enhancing its performance. By selecting the appropriate hole transport material, electron transport material, thickness of the absorber layer, doping densities, defect density in the absorber, interface defect densities, and working temperature point, we predict that the CsCuSbCl nanocrystal solar cell with the FTO/TiO/CsCuSbCl nanocrystals/CuO/Au structure can attain a power conversion efficiency of 23.07% at 300 K. Our analysis indicates that CsCuSbCl nanocrystals have great potential as an absorbing layer towards highly efficient lead-free all-inorganic perovskite solar cells.
在过去十年中,钙钛矿太阳能电池的性能实现了巨大飞跃,效率从3.8%提高到了25%。然而,由于毒性和稳定性问题,商用钙钛矿太阳能电池面临着一个主要障碍。因此,人们对无铅无机钙钛矿进行了研究,以寻找能提供与铅基钙钛矿相似高效率的替代钙钛矿。在最近的研究中,作为一种无铅无机钙钛矿材料,CsCuSbCl已被证明具有令人印象深刻的光电性能和出色的环境稳定性。此外,CsCuSbCl纳米晶体的有效光生载流子质量比块状CsCuSbCl小,这提供了出色的载流子迁移率。迄今为止,尚无关于用于制造太阳能电池的CsCuSbCl纳米晶体的报道。为了探索CsCuSbCl纳米晶体太阳能电池的潜力,我们使用太阳能电池电容模拟器提出了一种结构为FTO/ETL/CsCuSbCl纳米晶体/HTL/Au的无铅钙钛矿太阳能电池。此外,我们对影响CsCuSbCl纳米晶体太阳能电池性能的因素进行了数值研究,旨在提高其性能。通过选择合适的空穴传输材料、电子传输材料、吸收层厚度、掺杂密度、吸收层中的缺陷密度、界面缺陷密度和工作温度点,我们预测具有FTO/TiO/CsCuSbCl纳米晶体/CuO/Au结构的CsCuSbCl纳米晶体太阳能电池在300 K时可实现23.07%的功率转换效率。我们的分析表明,CsCuSbCl纳米晶体作为高效无铅全无机钙钛矿太阳能电池的吸收层具有巨大潜力。