Suppr超能文献

用于在水和生物体液中对神经递质进行高选择性和灵敏检测的荧光纳米沸石受体。

Fluorescent Nanozeolite Receptors for the Highly Selective and Sensitive Detection of Neurotransmitters in Water and Biofluids.

机构信息

Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.

出版信息

Adv Mater. 2021 Dec;33(49):e2104614. doi: 10.1002/adma.202104614. Epub 2021 Sep 27.

Abstract

The design and preparation of synthetic binders (SBs) applicable for small biomolecule sensing in aqueous media remains very challenging. SBs designed by the lock-and-key principle can be selective for their target analyte but usually show an insufficient binding strength in water. In contrast, SBs based on symmetric macrocycles with a hydrophobic cavity can display high binding affinities but generally suffer from indiscriminate binding of many analytes. Herein, a completely new and modular receptor design strategy based on microporous hybrid materials is presented yielding zeolite-based artificial receptors (ZARs) which reversibly bind the neurotransmitters serotonin and dopamine with unprecedented affinity and selectivity even in saline biofluids. ZARs are thought to uniquely exploit both the non-classical hydrophobic effect and direct non-covalent recognition motifs, which is supported by in-depth photophysical, and calorimetric experiments combined with full atomistic modeling. ZARs are thermally and chemically robust and can be readily prepared at gram scales. Their applicability for the label-free monitoring of important enzymatic reactions, for (two-photon) fluorescence imaging, and for high-throughput diagnostics in biofluids is demonstrated. This study showcases that artificial receptor based on microporous hybrid materials can overcome standing limitations of synthetic chemosensors, paving the way towards personalized diagnostics and metabolomics.

摘要

用于水溶液中小分子生物传感的合成配体(SBs)的设计和制备仍然极具挑战性。基于锁钥原理设计的 SBs 对其目标分析物具有选择性,但在水中通常表现出不足够的结合强度。相比之下,基于具有疏水腔的对称大环的 SBs 可以显示出高的结合亲和力,但通常会对许多分析物产生无差别结合。在此,提出了一种完全基于微孔杂化材料的全新模块化受体设计策略,得到了基于沸石的人工受体(ZARs),即使在盐生物流体中,它们也能以空前的亲和力和选择性可逆地结合神经递质血清素和多巴胺。ZARs 被认为独特地利用了非经典疏水效应和直接非共价识别基序,这得到了深入的光物理和量热实验以及全原子模拟的支持。ZARs 具有热稳定性和化学稳定性,可在克级规模上容易地制备。它们在用于无标记监测重要酶反应、(双光子)荧光成像以及用于生物流体中的高通量诊断的应用得到了证明。这项研究表明,基于微孔杂化材料的人工受体可以克服合成化学传感器的现有局限性,为个性化诊断和代谢组学铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c92/11468822/03b98661ee6e/ADMA-33-2104614-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验