Suppr超能文献

使用变分自编码器构建个体每日面部皮肤温度模型的尝试。

An attempt to construct the individual model of daily facial skin temperature using variational autoencoder.

作者信息

Masaki Ayaka, Nagumo Kent, Iwashita Yuki, Oiwa Kosuke, Nozawa Akio

机构信息

Aoyama Gakuin University, Tokyo, Japan.

出版信息

Artif Life Robot. 2021;26(4):488-493. doi: 10.1007/s10015-021-00699-7. Epub 2021 Sep 24.

Abstract

Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects.

摘要

面部皮肤温度(FST)作为检测诸如新冠肺炎引起的发热等异常情况的指标也备受关注。当FST用于工程应用时,能够识别正常情况就足够了。我们也在专注于检测FST中某些异常情况的研究。在之前的一项研究中,通过使用深度生成模型变分自编码器(VAE),证实了基于FST可以区分异常和正常情况。然而,到目前为止的模拟与现实相差甚远。在本研究中,将具有日变化成分的正常FST定义为正常状态,并使用VAE单独重建日常生活中正常FST的模型。使用构建的模型,通过应用霍特林理论评估异常检测性能。结果,在两名受试者中,ROC分析中的曲线下面积(AUC)值被确认为0.89至1.00。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf75/8461596/38cd73eb41d1/10015_2021_699_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验