Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
Centro de Investigacion Medica Aplicada, Instituto de Investigacion Sanitaria de Navarra Hematology Unit, Clinica Universidad de Navarra, Centro de Investigación Biomédica en Red, Cancér Hematology Unit, Pamplona, Spain.
Blood Adv. 2022 Jan 25;6(2):690-703. doi: 10.1182/bloodadvances.2021005198.
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets. It includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering, and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood (PB) from patients with smoldering multiple myeloma (SMM), identify minimally invasive immune biomarkers of progression from smoldering to active MM, define prognostic T-cell subsets in the BM of patients with active MM after treatment intensification, and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation were identified in 150 patients with SMM (hazard ratio [HR], 1.7; P < .001). We also determined progression-free survival (HR, 4.09; P < .0001) and overall survival (HR, 3.12; P = .047) in 100 patients with active MM. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM and PB, and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality control, analyze high-dimensional data, unveil cellular diversity, and objectively identify biomarkers in large immune monitoring studies. These trials were registered at www.clinicaltrials.gov as #NCT01916252 and #NCT02406144.
大规模免疫监测正日益成为临床试验中的常规手段,以确定治疗反应的决定因素,特别是针对免疫疗法。流式细胞术仍然是单细胞分析最通用和高通量的方法之一;然而,当试图捕获全细胞多样性并提供可重复的结果时,手动解释多维数据具有挑战性。我们提出了 FlowCT,这是一个半自动化的工作空间,用于分析大数据集。它包括预处理、归一化、多种降维技术、自动聚类和预测建模工具。作为概念验证,我们使用 FlowCT 比较了冒烟型多发性骨髓瘤 (SMM) 患者骨髓 (BM) 和外周血 (PB) 中的 T 细胞区室,确定了从冒烟型到活动性 MM 进展的微创免疫生物标志物,定义了强化治疗后活动性 MM 患者 BM 中预后 T 细胞亚群,并评估了 BM T 细胞维持治疗的纵向效果。共分析了 354 个样本,在 150 名 SMM 患者中鉴定出了预测恶性转化的免疫特征(风险比 [HR],1.7;P <.001)。我们还确定了 100 名活动性 MM 患者的无进展生存期(HR,4.09;P <.0001)和总生存期(HR,3.12;P =.047)。新数据还揭示了关于干细胞记忆 T 细胞、BM 和 PB 免疫谱之间的一致性以及维持治疗的免疫调节作用。FlowCT 是一种新的开源计算方法,研究实验室可以轻松实施该方法,以进行质量控制、分析高维数据、揭示细胞多样性,并在大型免疫监测研究中客观地识别生物标志物。这些试验在 www.clinicaltrials.gov 上注册为 #NCT01916252 和 #NCT02406144。