Suppr超能文献

动态随机深度学习方法在头颈部癌症几何变化预测中的应用。

Dynamic stochastic deep learning approaches for predicting geometric changes in head and neck cancer.

机构信息

Applied Physics Program, University of Michigan, Ann Arbor, MI, United States of America.

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States of America.

出版信息

Phys Med Biol. 2021 Nov 9;66(22). doi: 10.1088/1361-6560/ac2b80.

Abstract

Modern radiotherapy stands to benefit from the ability to efficiently adapt plans during treatment in response to setup and geometric variations such as those caused by internal organ deformation or tumor shrinkage. A promising strategy is to develop a framework, which given an initial state defined by patient-attributes, can predict future states based on pre-learned patterns from a well-defined patient population.Here, we investigate the feasibility of predicting patient anatomical changes, defined as a joint state of volume and daily setup changes, across a fractionated treatment schedule using two approaches. The first is based on a new joint framework employing quantum mechanics in combination with deep recurrent neural networks, denoted QRNN. The second approach is developed based on a classical framework, which models patient changes as a Markov process, denoted MRNN. We evaluated the performance characteristics of these two approaches on a dataset of 125 head and neck cancer patients, which was supplemented by synthetic data generated using a generative adversarial network. Model performance was evaluated using area under the receiver operating characteristic curve (AUC) scores.The MRNN framework had slightly better performance than the QRNN framework, with MRNN (QRNN) validation AUC scores of 0.742±0.021 (0.675±0.036), 0.709±0.026 (0.656±0.021), 0.724±0.036 (0.652±0.044), and 0.698±0.016 (0.605±0.035) for system state vector sizes of 4, 6, 8, and 10, respectively. Of these, only the results from the two higher order states had statistically significant differences(p<0.05).A similar trend was also observed when the models were applied to an external testing dataset of 20 patients, yielding MRNN (QRNN) AUC scores of 0.707 (0.623), 0.687 (0.608), 0.723 (0.669), and 0.697 (0.609) for states vectors sizes of 4, 6, 8, and 10, respectively.These results suggest that both stochastic models have potential value in predicting patient changes during the course of adaptive radiotherapy.

摘要

现代放射治疗有望通过在治疗过程中高效地调整计划,从而受益于应对诸如内部器官变形或肿瘤收缩等引起的设置和几何变化的能力。一种很有前途的策略是开发一种框架,该框架根据患者特征定义初始状态,可以根据从明确界定的患者群体中预先学习的模式来预测未来状态。在这里,我们通过两种方法研究了在分割治疗计划中预测患者解剖结构变化(定义为体积和每日设置变化的联合状态)的可行性。第一种方法基于一种新的联合框架,该框架结合了量子力学和深度递归神经网络,记为 QRNN。第二种方法是基于经典框架开发的,该框架将患者变化建模为马尔可夫过程,记为 MRNN。我们使用一个由 125 例头颈部癌症患者组成的数据集以及使用生成对抗网络生成的合成数据来评估这两种方法的性能特征。使用接收器操作特性曲线下的面积(AUC)分数来评估模型性能。MRNN 框架的性能略优于 QRNN 框架,MRNN(QRNN)验证 AUC 分数分别为 0.742±0.021(0.675±0.036)、0.709±0.026(0.656±0.021)、0.724±0.036(0.652±0.044)和 0.698±0.016(0.605±0.035),对于系统状态向量大小分别为 4、6、8 和 10。其中,只有两个更高阶状态的结果具有统计学上的显著差异(p<0.05)。当将模型应用于 20 例外部测试数据集时,也观察到了类似的趋势,MRNN(QRNN)AUC 分数分别为 0.707(0.623)、0.687(0.608)、0.723(0.669)和 0.697(0.609),对于状态向量大小分别为 4、6、8 和 10。这些结果表明,这两种随机模型在预测自适应放射治疗过程中患者变化方面都具有潜在价值。

相似文献

4
Quantum recurrent neural networks for sequential learning.量子递归神经网络的序列学习。
Neural Netw. 2023 Sep;166:148-161. doi: 10.1016/j.neunet.2023.07.003. Epub 2023 Jul 16.

本文引用的文献

4
Adaptive Radiotherapy for Anatomical Changes.自适应放疗应对解剖学变化。
Semin Radiat Oncol. 2019 Jul;29(3):245-257. doi: 10.1016/j.semradonc.2019.02.007.
9
Online Adaptive Radiation Therapy.在线自适应放射治疗
Int J Radiat Oncol Biol Phys. 2017 Nov 15;99(4):994-1003. doi: 10.1016/j.ijrobp.2017.04.023. Epub 2017 Apr 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验