Lassaline Nolan, Thureja Deepankur, Chervy Thibault, Petter Daniel, Murthy Puneet A, Knoll Armin W, Norris David J
Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Quantum Photonics Group, Department of Physics, ETH Zurich, 8092 Zurich, Switzerland.
Nano Lett. 2021 Oct 13;21(19):8175-8181. doi: 10.1021/acs.nanolett.1c02625. Epub 2021 Sep 30.
Atomically smooth hexagonal boron nitride (hBN) flakes have revolutionized two-dimensional (2D) optoelectronics. They provide the key substrate, encapsulant, and gate dielectric for 2D electronics while offering hyperbolic dispersion and quantum emission for photonics. The shape, thickness, and profile of these hBN flakes affect device functionality. However, researchers are restricted to simple, flat flakes, limiting next-generation devices. If arbitrary structures were possible, enhanced control over the flow of photons, electrons, and excitons could be exploited. Here, we demonstrate freeform hBN landscapes by combining thermal scanning-probe lithography and reactive-ion etching to produce previously unattainable flake structures with surprising fidelity. We fabricate photonic microelements (phase plates, grating couplers, and lenses) and show their straightforward integration, constructing a high-quality optical microcavity. We then decrease the length scale to introduce Fourier surfaces for electrons, creating sophisticated Moiré patterns for strain and band-structure engineering. These capabilities generate opportunities for 2D polaritonics, twistronics, quantum materials, and deep-ultraviolet devices.
原子级光滑的六方氮化硼(hBN)薄片彻底改变了二维(2D)光电子学。它们为二维电子学提供了关键的衬底、封装材料和栅极电介质,同时为光子学提供了双曲线色散和量子发射。这些hBN薄片的形状、厚度和轮廓会影响器件功能。然而,研究人员只能使用简单的扁平薄片,这限制了下一代器件的发展。如果能够制造出任意结构,就可以更好地控制光子、电子和激子的流动。在这里,我们通过结合热扫描探针光刻和反应离子蚀刻技术,展示了自由形式的hBN结构,能够以惊人的保真度制造出以前无法实现的薄片结构。我们制造了光子微元件(相位板、光栅耦合器和透镜),并展示了它们的直接集成,构建了一个高质量的光学微腔。然后,我们缩小长度尺度,引入电子的傅里叶表面,为应变和能带结构工程创造复杂的莫尔图案。这些能力为二维极化激元学、扭曲电子学、量子材料和深紫外器件带来了机遇。