Sørensen Camilla H, Nielsen Magnus V, Linde Sander J, Nguyen Duc Hieu, Iversen Christoffer E, Jensen Robert, Raza Søren, Bøggild Peter, Booth Timothy J, Lassaline Nolan
Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
Nat Protoc. 2025 Sep 5. doi: 10.1038/s41596-025-01228-7.
Scanning probe microscopy (SPM) is a powerful technique for mapping nanoscale surface properties through tip-sample interactions. Thermal scanning-probe lithography (tSPL) is an advanced SPM variant that uses a silicon tip on a heated cantilever to sculpt and measure the topography of polymer films with nanometer precision. The surfaces produced by tSPL-smooth topographic landscapes-allow mathematically defined contours to be fabricated on the nanoscale, enabling sophisticated functionalities for photonic, electronic, chemical and biological technologies. Evaluating the physical effects of a landscape requires fitting arbitrary mathematical functions to SPM datasets; however, this capability does not exist in standard analysis programs. Here, we provide an open-source software package (FunFit) to fit analytical functions to SPM data and develop a fabrication and characterization protocol based on this analysis. We demonstrate the benefit of this approach by patterning periodic and quasi-periodic landscapes in a polymer resist with tSPL, which we transfer to hexagonal boron nitride (hBN) flakes with high fidelity via reactive ion etching. The topographic landscapes in polymers and hBN are measured with tSPL and atomic force microscopy, respectively. Within the FunFit program, the datasets are corrected for artifacts, fit with analytical functions and compared, providing critical feedback on the fabrication procedure. This approach can improve analysis, reproducibility and process development for a broad range of SPM experiments. The protocol can be performed within a working day by a trained graduate student or researcher, where fabrication and characterization take a few hours, and software analysis takes a few minutes.
扫描探针显微镜(SPM)是一种通过针尖与样品相互作用来绘制纳米级表面特性的强大技术。热扫描探针光刻技术(tSPL)是一种先进的SPM变体,它使用加热悬臂上的硅针尖以纳米精度雕刻和测量聚合物薄膜的形貌。tSPL产生的表面——光滑的地形景观——允许在纳米尺度上制造数学定义的轮廓,从而为光子、电子、化学和生物技术实现复杂的功能。评估地形的物理效应需要将任意数学函数拟合到SPM数据集;然而,标准分析程序中不存在这种功能。在这里,我们提供了一个开源软件包(FunFit)来将分析函数拟合到SPM数据,并基于此分析开发了一种制造和表征协议。我们通过用tSPL在聚合物抗蚀剂中图案化周期性和准周期性景观来证明这种方法的好处,然后通过反应离子蚀刻将其高保真地转移到六方氮化硼(hBN)薄片上。聚合物和hBN中的地形景观分别用tSPL和原子力显微镜测量。在FunFit程序中,对数据集进行伪像校正、用分析函数拟合并进行比较,为制造过程提供关键反馈。这种方法可以改进广泛的SPM实验的分析、可重复性和工艺开发。该协议可以由经过培训的研究生或研究人员在一个工作日内完成,其中制造和表征需要几个小时,软件分析需要几分钟。