Gong Xue-Qin, Tao Yun-Yun, Wu Yao-Kun, Liu Ning, Yu Xi, Wang Ran, Zheng Jing, Liu Nian, Huang Xiao-Hua, Li Jing-Dong, Yang Gang, Wei Xiao-Qin, Yang Lin, Zhang Xiao-Ming
Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
Front Oncol. 2021 Sep 20;11:698373. doi: 10.3389/fonc.2021.698373. eCollection 2021.
Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively.
This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC.
A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis.
Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients.
Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
肝细胞癌(HCC)是全球第六大常见癌症,也是癌症相关死亡的第三大主要原因。尽管目前HCC的诊断方案正在不断完善,但HCC的预后仍然不尽人意。除了某些因素,如传统影像学上显示的肿瘤大小、数量和血管侵犯外,一些组织病理学特征和基因表达参数对HCC患者的预后也很重要。然而,大多数参数基于术后病理检查,无助于术前决策。作为一个新领域,放射组学从不同类型的图像中提取高通量成像数据以建立模型,并在术前无创地预测临床结果,使其成为术前制定个性化治疗决策的有力辅助手段。
本研究回顾了放射组学的工作流程以及磁共振成像(MRI)放射组学在HCC诊断和治疗中的研究进展。
通过检索PubMed进行文献综述,以查找2017年5月至2021年6月发表的相关同行评审文章。检索关键词包括HCC、MRI、放射组学、深度学习、人工智能、机器学习、神经网络、纹理分析、诊断、组织病理学、微血管侵犯、手术切除、射频、复发、转移复发、经动脉化疗栓塞、靶向治疗、免疫治疗、治疗反应和预后。
MRI上的放射组学特征可作为生物标志物,用于确定HCC患者的鉴别诊断、组织学分级、微血管侵犯状态、基因表达状态、局部和全身治疗反应以及预后。
放射组学是一种很有前景的新成像方法。MRI放射组学在HCC的诊断和治疗中具有较高的应用价值。