Suppr超能文献

一种用于生物表面成像的自适应显微镜。

An adaptive microscope for the imaging of biological surfaces.

作者信息

Abouakil Faris, Meng Huicheng, Burcklen Marie-Anne, Rigneault Hervé, Galland Frédéric, LeGoff Loïc

机构信息

Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Turing Center for Living Systems, Marseille, France.

出版信息

Light Sci Appl. 2021 Oct 7;10(1):210. doi: 10.1038/s41377-021-00649-9.

Abstract

Scanning fluorescence microscopes are now able to image large biological samples at high spatial and temporal resolution. This comes at the expense of an increased light dose which is detrimental to fluorophore stability and cell physiology. To highly reduce the light dose, we designed an adaptive scanning fluorescence microscope with a scanning scheme optimized for the unsupervised imaging of cell sheets, which underly the shape of many embryos and organs. The surface of the tissue is first delineated from the acquisition of a very small subset (~0.1%) of sample space, using a robust estimation strategy. Two alternative scanning strategies are then proposed to image the tissue with an improved photon budget, without loss in resolution. The first strategy consists in scanning only a thin shell around the estimated surface of interest, allowing high reduction of light dose when the tissue is curved. The second strategy applies when structures of interest lie at the cell periphery (e.g. adherens junctions). An iterative approach is then used to propagate scanning along cell contours. We demonstrate the benefit of our approach imaging live epithelia from Drosophila melanogaster. On the examples shown, both approaches yield more than a 20-fold reduction in light dose -and up to more than 80-fold- compared to a full scan of the volume. These smart-scanning strategies can be easily implemented on most scanning fluorescent imaging modality. The dramatic reduction in light exposure of the sample should allow prolonged imaging of the live processes under investigation.

摘要

扫描荧光显微镜现在能够以高空间和时间分辨率对大型生物样本进行成像。这是以增加光剂量为代价的,而增加的光剂量对荧光团稳定性和细胞生理有害。为了大幅降低光剂量,我们设计了一种自适应扫描荧光显微镜,其扫描方案针对细胞片层的无监督成像进行了优化,细胞片层构成了许多胚胎和器官的形状。首先,使用一种稳健估计策略,通过采集样本空间中非常小的一个子集(约0.1%)来描绘组织表面。然后提出两种替代扫描策略,以在不损失分辨率的情况下,用改进的光子预算对组织进行成像。第一种策略是仅围绕估计的感兴趣表面扫描一个薄壳,当组织弯曲时可大幅降低光剂量。第二种策略适用于感兴趣的结构位于细胞周边(如黏着连接)的情况。然后使用一种迭代方法沿细胞轮廓传播扫描。我们展示了我们的方法在对黑腹果蝇的活上皮进行成像时的优势。在所示的例子中,与对整个体积进行全扫描相比,这两种方法的光剂量都降低了20倍以上,甚至高达80倍以上。这些智能扫描策略可以很容易地在大多数扫描荧光成像模式上实现。样本光暴露的大幅减少应该能够延长对所研究的生命过程的成像时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1c4/8497591/5c3f91e42cef/41377_2021_649_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验