文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过芯片实验室装置合成磁铁矿纳米颗粒。

Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device.

作者信息

Chircov Cristina, Bîrcă Alexandra Cătălina, Grumezescu Alexandru Mihai, Vasile Bogdan Stefan, Oprea Ovidiu, Nicoară Adrian Ionuț, Yang Chih-Hui, Huang Keng-Shiang, Andronescu Ecaterina

机构信息

Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania.

Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania.

出版信息

Materials (Basel). 2021 Oct 8;14(19):5906. doi: 10.3390/ma14195906.


DOI:10.3390/ma14195906
PMID:34640303
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8510126/
Abstract

Magnetite nanoparticles (MNPs) represent one of the most intensively studied types of iron oxide nanoparticles in various fields, including biomedicine, pharmaceutics, bioengineering, and industry. Since their properties in terms of size, shape, and surface charge significantly affects their efficiency towards the envisaged application, it is fundamentally important to develop a new synthesis route that allows for the control and modulation of the nanoparticle features. In this context, the aim of the present study was to develop a new method for the synthesis of MNPs. Specifically, a microfluidic lab-on-chip (LoC) device was used to obtain MNPs with controlled properties. The study investigated the influence of iron precursor solution concentration and flowed onto the final properties of the nanomaterials. The synthesized MNPs were characterized in terms of size, morphology, structure, composition, and stability. Results proved the formation of magnetite as a single mineral phase. Moreover, the uniform spherical shape and narrow size distribution were demonstrated. Optimal characteristics regarding MNPs crystallinity, uniformity, and thermal stability were obtained at higher concentrations and lower flows. In this manner, the potential of the LoC device is a promising tool for the synthesis of nanomaterials by ensuring the necessary uniformity for all final applications.

摘要

磁铁矿纳米颗粒(MNPs)是在包括生物医学、制药、生物工程和工业等各个领域中研究最为深入的氧化铁纳米颗粒类型之一。由于其在尺寸、形状和表面电荷方面的特性会显著影响其在预期应用中的效率,因此开发一种能够控制和调节纳米颗粒特性的新合成路线至关重要。在此背景下,本研究的目的是开发一种合成MNPs的新方法。具体而言,使用了一种微流控芯片实验室(LoC)装置来获得具有可控特性的MNPs。该研究考察了铁前驱体溶液浓度和流速对纳米材料最终性能的影响。对合成的MNPs进行了尺寸、形态、结构、组成和稳定性方面的表征。结果证明形成了作为单一矿物相的磁铁矿。此外,还展示了均匀的球形形状和窄尺寸分布。在较高浓度和较低流速下获得了关于MNPs结晶度、均匀性和热稳定性的最佳特性。通过这种方式,LoC装置的潜力在于通过确保所有最终应用所需的均匀性,成为合成纳米材料的一种有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/c96a72173712/materials-14-05906-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/9c0eaad0c18a/materials-14-05906-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/fb8b71562d96/materials-14-05906-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/66ecb8631d7f/materials-14-05906-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/6b637bca28e5/materials-14-05906-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/d28267115392/materials-14-05906-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/a249cdded077/materials-14-05906-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/ca058e126552/materials-14-05906-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/4c31ad394842/materials-14-05906-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/c96a72173712/materials-14-05906-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/9c0eaad0c18a/materials-14-05906-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/fb8b71562d96/materials-14-05906-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/66ecb8631d7f/materials-14-05906-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/6b637bca28e5/materials-14-05906-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/d28267115392/materials-14-05906-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/a249cdded077/materials-14-05906-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/ca058e126552/materials-14-05906-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/4c31ad394842/materials-14-05906-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a33/8510126/c96a72173712/materials-14-05906-g009.jpg

相似文献

[1]
Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device.

Materials (Basel). 2021-10-8

[2]
Microfluidic Synthesis of -NH- and -COOH-Functionalized Magnetite Nanoparticles.

Nanomaterials (Basel). 2022-9-12

[3]
Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics.

Pharmaceutics. 2023-8-27

[4]
Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review.

Polymers (Basel). 2022-2-15

[5]
Morphology-Controlled Synthesis of Magnetic Nanoparticles Using Extracts of 'Hairy' Roots: Environmental Application and Toxicity Evaluation.

Nanomaterials (Basel). 2022-11-28

[6]
Phyco-linked vs chemogenic magnetite nanoparticles: Route selectivity in nano-synthesis, antibacterial and acute zooplanktonic responses.

Mater Sci Eng C Mater Biol Appl. 2019-1-15

[7]
Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications.

Nanotechnology. 2023-2-24

[8]
Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.

Nanoscale. 2019-8-28

[9]
Magnetite nanoparticles: Synthesis methods - A comparative review.

Methods. 2022-3

[10]
Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B.

Environ Sci Pollut Res Int. 2019-6-15

引用本文的文献

[1]
Aminoacid functionalised magnetite nanoparticles FeO@AA (AA = Ser, Cys, Pro, Trp) as biocompatible magnetite nanoparticles with potential therapeutic applications.

Sci Rep. 2024-10-31

[2]
Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil.

Antioxidants (Basel). 2024-7-24

[3]
New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell FeO-SA Nanoparticle Synthesis.

Nanomaterials (Basel). 2024-5-21

[4]
Microwave-Assisted Silanization of Magnetite Nanoparticles Pre-Synthesized by a 3D Microfluidic Platform.

Nanomaterials (Basel). 2023-10-20

[5]
Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics.

Pharmaceutics. 2023-8-27

[6]
A Microfluidic Approach for Synthesis of Silver Nanoparticles as a Potential Antimicrobial Agent in Alginate-Hyaluronic Acid-Based Wound Dressings.

Int J Mol Sci. 2023-7-14

[7]
Usnic Acid-Loaded Magnetite Nanoparticles-A Comparative Study between Synthesis Methods.

Molecules. 2023-7-4

[8]
Zinc/Cerium-Substituted Magnetite Nanoparticles for Biomedical Applications.

Int J Mol Sci. 2023-3-26

[9]
Synthesis and Characterization of Citric Acid-Modified Iron Oxide Nanoparticles Prepared with Electrohydraulic Discharge Treatment.

Materials (Basel). 2023-1-12

[10]
Chitosan-Dextran-Glycerol Hydrogels Loaded with Iron Oxide Nanoparticles for Wound Dressing Applications.

Pharmaceutics. 2022-11-28

本文引用的文献

[1]
Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics.

RSC Adv. 2020-4-17

[2]
Eugenol-Functionalized Magnetite Nanoparticles Modulate Virulence and Persistence in Clinical Strains.

Molecules. 2021-4-10

[3]
Magnetite nanoparticles: Synthesis methods - A comparative review.

Methods. 2022-3

[4]
Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization.

ACS Omega. 2021-2-26

[5]
Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.

Molecules. 2021-2-4

[6]
Biosensors-on-Chip: An Up-to-Date Review.

Molecules. 2020-12-18

[7]
Microfluidic-enabled magnetic labelling of nanovesicles for bioanalytical applications.

Analyst. 2021-2-7

[8]
Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies.

Int J Mol Sci. 2020-10-5

[9]
Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions.

Nanomaterials (Basel). 2020-7-30

[10]
Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review.

Molecules. 2020-7-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索