Dpto. Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.
Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain and BC Materials, Basque Center for Materials, Applications and Nanostructures, Sarriena s/n, 48940 Leioa, Spain.
Nanoscale. 2019 Sep 21;11(35):16635-16649. doi: 10.1039/c9nr04970c. Epub 2019 Aug 28.
Most studies on magnetic nanoparticle-based hyperthermia utilize iron oxide nanoparticles smaller than 20 nm, which are intended to have superparamagnetic behavior (SP-MNPs). However, the heating power of larger magnetic nanoparticles with non-fluctuating or fixed magnetic dipoles (F-MNPs) can be significantly greater than that of SP-MNPs if high enough fields (H > 15 mT) are used. But the synthesis of larger single nanocrystals of magnetite (FeO) with a regular shape and narrow size distribution devoid of secondary phases remains a challenge. Iron oxide nanoparticles, grown over 25 nm, often present large shape and size polydispersities, twinning defects and a significant fraction of the wüstite-type (FeO) paramagnetic phase, resulting in degradation of magnetic properties. Herein, we introduce an improved procedure to synthesize monodisperse F-MNPs in the range of 25 to 50 nm with a distinct octahedral morphology and very crystalline magnetite phase. We unravel the subtle phase transformation that takes place during the synthesis by a thorough study in several non-optimized nanoparticles presenting a core-shell structure or composed of magnetite-type clusters embedded in a wüstite lattice. Optimized magnetite samples present a slight decrease in the saturation magnetization compared to bulk magnetite, which is successfully explained by the presence of Fe vacancies. However, due to the high quality of these samples, AC magnetometry measurements have shown excellent specific absorption rates (>1000 W g at 40 mT and 300 kHz). Most importantly, the magnetic response and the hyperthermia performance of properly coated F-MNPs are kept basically unaltered in media with very different viscosities and ionic strength. Finally, using a physical model based on single magnetic domain approaches, we derive a novel connection between the octahedral shape and the high hyperthermia performance.
大多数基于磁性纳米粒子的热疗研究都使用小于 20nm 的氧化铁纳米粒子,这些粒子旨在具有超顺磁性(SP-MNPs)。然而,如果使用足够高的场(H>15mT),具有非波动或固定磁偶极子(F-MNPs)的较大磁性纳米粒子的加热功率可以显著大于 SP-MNPs。但是,合成具有规则形状和窄尺寸分布且没有次级相的较大单磁畴磁铁矿(FeO)纳米晶体仍然是一个挑战。生长超过 25nm 的氧化铁纳米粒子通常具有较大的形状和尺寸多分散性、孪晶缺陷和相当一部分尖晶石型(FeO)顺磁相,导致磁性能下降。在此,我们介绍了一种改进的方法,可在 25nm 至 50nm 的范围内合成具有明显八面体形态和非常结晶的磁铁矿相的单分散 F-MNPs。我们通过对具有核壳结构或由嵌入在尖晶石晶格中的磁铁矿型簇组成的几个非优化纳米粒子进行彻底研究,揭示了合成过程中发生的微妙相变。优化的磁铁矿样品的饱和磁化强度与块状磁铁矿相比略有下降,这可以通过 Fe 空位的存在成功解释。然而,由于这些样品的高质量,交流磁强计测量显示出优异的比吸收率(在 40mT 和 300kHz 时大于 1000W/g)。最重要的是,在具有非常不同粘度和离子强度的介质中,适当包覆的 F-MNPs 的磁响应和热疗性能基本保持不变。最后,我们使用基于单磁畴方法的物理模型,得出了八面体形状与高热疗性能之间的新关系。
ACS Appl Mater Interfaces. 2020-6-24
Mater Sci Eng C Mater Biol Appl. 2014-9
Mater Sci Eng C Mater Biol Appl. 2020-12
ACS Appl Mater Interfaces. 2025-5-21
Nanoscale Adv. 2021-1-15
Nanomaterials (Basel). 2021-12-15