文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

尺寸大于 20nm 的纳米八面体具有出色的散热能力:从富含赤铁矿的纳米颗粒到磁铁矿单晶。

Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.

机构信息

Dpto. Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.

Dpto. Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain and BC Materials, Basque Center for Materials, Applications and Nanostructures, Sarriena s/n, 48940 Leioa, Spain.

出版信息

Nanoscale. 2019 Sep 21;11(35):16635-16649. doi: 10.1039/c9nr04970c. Epub 2019 Aug 28.


DOI:10.1039/c9nr04970c
PMID:31460555
Abstract

Most studies on magnetic nanoparticle-based hyperthermia utilize iron oxide nanoparticles smaller than 20 nm, which are intended to have superparamagnetic behavior (SP-MNPs). However, the heating power of larger magnetic nanoparticles with non-fluctuating or fixed magnetic dipoles (F-MNPs) can be significantly greater than that of SP-MNPs if high enough fields (H > 15 mT) are used. But the synthesis of larger single nanocrystals of magnetite (FeO) with a regular shape and narrow size distribution devoid of secondary phases remains a challenge. Iron oxide nanoparticles, grown over 25 nm, often present large shape and size polydispersities, twinning defects and a significant fraction of the wüstite-type (FeO) paramagnetic phase, resulting in degradation of magnetic properties. Herein, we introduce an improved procedure to synthesize monodisperse F-MNPs in the range of 25 to 50 nm with a distinct octahedral morphology and very crystalline magnetite phase. We unravel the subtle phase transformation that takes place during the synthesis by a thorough study in several non-optimized nanoparticles presenting a core-shell structure or composed of magnetite-type clusters embedded in a wüstite lattice. Optimized magnetite samples present a slight decrease in the saturation magnetization compared to bulk magnetite, which is successfully explained by the presence of Fe vacancies. However, due to the high quality of these samples, AC magnetometry measurements have shown excellent specific absorption rates (>1000 W g at 40 mT and 300 kHz). Most importantly, the magnetic response and the hyperthermia performance of properly coated F-MNPs are kept basically unaltered in media with very different viscosities and ionic strength. Finally, using a physical model based on single magnetic domain approaches, we derive a novel connection between the octahedral shape and the high hyperthermia performance.

摘要

大多数基于磁性纳米粒子的热疗研究都使用小于 20nm 的氧化铁纳米粒子,这些粒子旨在具有超顺磁性(SP-MNPs)。然而,如果使用足够高的场(H>15mT),具有非波动或固定磁偶极子(F-MNPs)的较大磁性纳米粒子的加热功率可以显著大于 SP-MNPs。但是,合成具有规则形状和窄尺寸分布且没有次级相的较大单磁畴磁铁矿(FeO)纳米晶体仍然是一个挑战。生长超过 25nm 的氧化铁纳米粒子通常具有较大的形状和尺寸多分散性、孪晶缺陷和相当一部分尖晶石型(FeO)顺磁相,导致磁性能下降。在此,我们介绍了一种改进的方法,可在 25nm 至 50nm 的范围内合成具有明显八面体形态和非常结晶的磁铁矿相的单分散 F-MNPs。我们通过对具有核壳结构或由嵌入在尖晶石晶格中的磁铁矿型簇组成的几个非优化纳米粒子进行彻底研究,揭示了合成过程中发生的微妙相变。优化的磁铁矿样品的饱和磁化强度与块状磁铁矿相比略有下降,这可以通过 Fe 空位的存在成功解释。然而,由于这些样品的高质量,交流磁强计测量显示出优异的比吸收率(在 40mT 和 300kHz 时大于 1000W/g)。最重要的是,在具有非常不同粘度和离子强度的介质中,适当包覆的 F-MNPs 的磁响应和热疗性能基本保持不变。最后,我们使用基于单磁畴方法的物理模型,得出了八面体形状与高热疗性能之间的新关系。

相似文献

[1]
Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.

Nanoscale. 2019-8-28

[2]
Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2020-6-24

[3]
A Milestone in the Chemical Synthesis of FeO Nanoparticles: Unreported Bulklike Properties Lead to a Remarkable Magnetic Hyperthermia.

Chem Mater. 2021-11-23

[4]
Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.

Chem Mater. 2021-5-11

[5]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

[6]
Biosynthesis of magnetite and cobalt ferrite nanoparticles using extracts of "hairy" roots: preparation, characterization, estimation for environmental remediation and biological application.

RSC Adv. 2021-8-9

[7]
Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2014-9

[8]
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Molecules. 2013-6-27

[9]
How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.

Nanoscale. 2021-10-1

[10]
Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2020-12

引用本文的文献

[1]
From Bimetallic Oleates to Customized Biomedical Nanoplatforms: A Versatile Approach for the Multidoping of Ferrites.

ACS Appl Mater Interfaces. 2025-5-21

[2]
Preparation of Selenium-Based Drug-Modified Polymeric Ligand-Functionalised FeO Nanoparticles as Multimodal Drug Carrier and Magnetic Hyperthermia Inductor.

Pharmaceuticals (Basel). 2023-6-30

[3]
Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications.

Nat Protoc. 2023-3

[4]
Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency.

ACS Appl Mater Interfaces. 2023-1-11

[5]
Efficient Magneto-Luminescent Nanosystems based on Rhodamine-Loaded Magnetite Nanoparticles with Optimized Heating Power and Ideal Thermosensitive Fluorescence.

ACS Appl Mater Interfaces. 2022-10-27

[6]
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications.

Nanoscale Adv. 2021-1-15

[7]
Probing the stability and magnetic properties of magnetosome chains in freeze-dried magnetotactic bacteria.

Nanoscale Adv. 2020-2-27

[8]
Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms.

Nanoscale Adv. 2020-9-1

[9]
Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro.

Pharmaceutics. 2021-11-27

[10]
Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review.

Nanomaterials (Basel). 2021-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索