Suppr超能文献

将深度学习应用于加速多发性硬化症的临床脑磁共振成像

Applying Deep Learning to Accelerated Clinical Brain Magnetic Resonance Imaging for Multiple Sclerosis.

作者信息

Mani Ashika, Santini Tales, Puppala Radhika, Dahl Megan, Venkatesh Shruthi, Walker Elizabeth, DeHaven Megan, Isitan Cigdem, Ibrahim Tamer S, Wang Long, Zhang Tao, Gong Enhao, Barrios-Martinez Jessica, Yeh Fang-Cheng, Krafty Robert, Mettenburg Joseph M, Xia Zongqi

机构信息

Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States.

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Front Neurol. 2021 Sep 27;12:685276. doi: 10.3389/fneur.2021.685276. eCollection 2021.

Abstract

Magnetic resonance (MR) scans are routine clinical procedures for monitoring people with multiple sclerosis (PwMS). Patient discomfort, timely scheduling, and financial burden motivate the need to accelerate MR scan time. We examined the clinical application of a deep learning (DL) model in restoring the image quality of accelerated routine clinical brain MR scans for PwMS. We acquired fast 3D T1w BRAVO and fast 3D T2w FLAIR MRI sequences (half the phase encodes and half the number of slices) in parallel to conventional parameters. Using a subset of the scans, we trained a DL model to generate images from fast scans with quality similar to the conventional scans and then applied the model to the remaining scans. We calculated clinically relevant T1w volumetrics (normalized whole brain, thalamic, gray matter, and white matter volume) for all scans and T2 lesion volume in a sub-analysis. We performed paired -tests comparing conventional, fast, and fast with DL for these volumetrics, and fit repeated measures mixed-effects models to test for differences in correlations between volumetrics and clinically relevant patient-reported outcomes (PRO). We found statistically significant but small differences between conventional and fast scans with DL for all T1w volumetrics. There was no difference in the extent to which the key T1w volumetrics correlated with clinically relevant PROs of MS symptom burden and neurological disability. A deep learning model that improves the image quality of the accelerated routine clinical brain MR scans has the potential to inform clinically relevant outcomes in MS.

摘要

磁共振(MR)扫描是监测多发性硬化症患者(PwMS)的常规临床检查。患者的不适、时间安排以及经济负担促使人们需要加快MR扫描时间。我们研究了深度学习(DL)模型在恢复PwMS患者加速常规临床脑部MR扫描图像质量方面的临床应用。我们在获取常规参数的同时,并行采集了快速三维T1加权BRAVO序列和快速三维T2加权液体衰减反转恢复(FLAIR)序列(相位编码减半,层数减半)。我们使用部分扫描数据训练了一个DL模型,以从快速扫描中生成质量与常规扫描相似的图像,然后将该模型应用于其余扫描数据。我们计算了所有扫描数据的临床相关T1加权容积测量值(全脑、丘脑、灰质和白质体积标准化),并在一项子分析中计算了T2病变体积。我们对这些容积测量值进行配对t检验,比较常规扫描、快速扫描以及使用DL的快速扫描,并拟合重复测量混合效应模型,以检验容积测量值与临床相关患者报告结局(PRO)之间相关性的差异。我们发现,对于所有T1加权容积测量值,常规扫描与使用DL的快速扫描之间存在统计学上显著但微小的差异。关键的T1加权容积测量值与MS症状负担和神经功能障碍的临床相关PRO之间的相关性程度没有差异。一个能够提高加速常规临床脑部MR扫描图像质量的深度学习模型有可能为MS的临床相关结局提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1464/8504490/910d3f27aa51/fneur-12-685276-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验