Vo Vi Thi-Tuong, Yang Hyung-Jeong, Lee Guee-Sang, Kang Sae-Ryung, Kim Soo-Hyung
Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, South Korea.
Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Gwangju, South Korea.
Front Oncol. 2021 Oct 1;11:697178. doi: 10.3389/fonc.2021.697178. eCollection 2021.
Segmentation of liver tumors from Computerized Tomography (CT) images remains a challenge due to the natural variation in tumor shape and structure as well as the noise in CT images. A key assumption is that the performance of liver tumor segmentation depends on the characteristics of multiple features extracted from multiple filters. In this paper, we design an enhanced approach based on a two-class (liver, tumor) convolutional neural network that discriminates tumor as well as liver from CT images. First, the contrast and intensity values in CT images are adjusted and high frequencies are removed using Hounsfield units (HU) filtering and standardization. Then, the liver tumor is segmented from entire images with multiple filter U-net (MFU-net). Finally, a quantitative analysis is carried out to evaluate the segmentation results using three different methods: boundary-distance-based metrics, size-based metrics, and overlap-based metrics. The proposed method is validated on CT images from the 3Dircadb and LiTS dataset. The results demonstrate that the multiple filters are useful for extracting local and global feature simultaneously, minimizing the boundary distance errors, and our approach demonstrates better performance in heterogeneous tumor regions of CT images.
由于肝脏肿瘤形状和结构的自然变化以及计算机断层扫描(CT)图像中的噪声,从CT图像中分割肝脏肿瘤仍然是一项挑战。一个关键假设是,肝脏肿瘤分割的性能取决于从多个滤波器提取的多个特征的特性。在本文中,我们基于一个两类(肝脏、肿瘤)卷积神经网络设计了一种增强方法,该网络可从CT图像中区分肿瘤和肝脏。首先,使用亨氏单位(HU)滤波和标准化调整CT图像中的对比度和强度值,并去除高频。然后,使用多滤波器U型网络(MFU-net)从整个图像中分割肝脏肿瘤。最后,使用三种不同方法进行定量分析以评估分割结果:基于边界距离的指标、基于大小的指标和基于重叠的指标。所提出的方法在来自3Dircadb和LiTS数据集的CT图像上得到了验证。结果表明,多个滤波器有助于同时提取局部和全局特征,最小化边界距离误差,并且我们的方法在CT图像的异质肿瘤区域表现出更好的性能。
Front Oncol. 2021-10-1
Front Oncol. 2021-8-9
J Appl Clin Med Phys. 2019-12-2
Med Hypotheses. 2019-10-14
Bioengineering (Basel). 2023-7-28
Comput Methods Programs Biomed. 2020-8
IEEE Trans Med Imaging. 2018-6-11
J Med Imaging (Bellingham). 2018-1
Artif Intell Med. 2017-3-27
Int J Comput Assist Radiol Surg. 2017-2
IEEE Trans Med Imaging. 2012-8-7
IEEE Trans Med Imaging. 2009-8