文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多种滤波器对CT图像肝脏肿瘤分割的影响

Effects of Multiple Filters on Liver Tumor Segmentation From CT Images.

作者信息

Vo Vi Thi-Tuong, Yang Hyung-Jeong, Lee Guee-Sang, Kang Sae-Ryung, Kim Soo-Hyung

机构信息

Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, South Korea.

Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Gwangju, South Korea.

出版信息

Front Oncol. 2021 Oct 1;11:697178. doi: 10.3389/fonc.2021.697178. eCollection 2021.


DOI:10.3389/fonc.2021.697178
PMID:34660267
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8517527/
Abstract

Segmentation of liver tumors from Computerized Tomography (CT) images remains a challenge due to the natural variation in tumor shape and structure as well as the noise in CT images. A key assumption is that the performance of liver tumor segmentation depends on the characteristics of multiple features extracted from multiple filters. In this paper, we design an enhanced approach based on a two-class (liver, tumor) convolutional neural network that discriminates tumor as well as liver from CT images. First, the contrast and intensity values in CT images are adjusted and high frequencies are removed using Hounsfield units (HU) filtering and standardization. Then, the liver tumor is segmented from entire images with multiple filter U-net (MFU-net). Finally, a quantitative analysis is carried out to evaluate the segmentation results using three different methods: boundary-distance-based metrics, size-based metrics, and overlap-based metrics. The proposed method is validated on CT images from the 3Dircadb and LiTS dataset. The results demonstrate that the multiple filters are useful for extracting local and global feature simultaneously, minimizing the boundary distance errors, and our approach demonstrates better performance in heterogeneous tumor regions of CT images.

摘要

由于肝脏肿瘤形状和结构的自然变化以及计算机断层扫描(CT)图像中的噪声,从CT图像中分割肝脏肿瘤仍然是一项挑战。一个关键假设是,肝脏肿瘤分割的性能取决于从多个滤波器提取的多个特征的特性。在本文中,我们基于一个两类(肝脏、肿瘤)卷积神经网络设计了一种增强方法,该网络可从CT图像中区分肿瘤和肝脏。首先,使用亨氏单位(HU)滤波和标准化调整CT图像中的对比度和强度值,并去除高频。然后,使用多滤波器U型网络(MFU-net)从整个图像中分割肝脏肿瘤。最后,使用三种不同方法进行定量分析以评估分割结果:基于边界距离的指标、基于大小的指标和基于重叠的指标。所提出的方法在来自3Dircadb和LiTS数据集的CT图像上得到了验证。结果表明,多个滤波器有助于同时提取局部和全局特征,最小化边界距离误差,并且我们的方法在CT图像的异质肿瘤区域表现出更好的性能。

相似文献

[1]
Effects of Multiple Filters on Liver Tumor Segmentation From CT Images.

Front Oncol. 2021-10-1

[2]
Adaptive Attention Convolutional Neural Network for Liver Tumor Segmentation.

Front Oncol. 2021-8-9

[3]
Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images.

Med Phys. 2021-1

[4]
PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.

Med Phys. 2021-7

[5]
Liver tumor segmentation based on 3D convolutional neural network with dual scale.

J Appl Clin Med Phys. 2019-12-2

[6]
Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.

Med Hypotheses. 2019-10-14

[7]
CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm.

Artif Intell Med. 2018-12-14

[8]
Automatic liver segmentation by integrating fully convolutional networks into active contour models.

Med Phys. 2019-8-16

[9]
ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.

Med Phys. 2020-7

[10]
A Boundary-Enhanced Liver Segmentation Network for Multi-Phase CT Images with Unsupervised Domain Adaptation.

Bioengineering (Basel). 2023-7-28

引用本文的文献

[1]
Quantitative analysis of artificial intelligence on liver cancer: A bibliometric analysis.

Front Oncol. 2023-2-16

本文引用的文献

[1]
Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method.

BMC Biomed Eng. 2021-3-1

[2]
Deeply self-supervised contour embedded neural network applied to liver segmentation.

Comput Methods Programs Biomed. 2020-8

[3]
MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation.

Neural Netw. 2019-9-4

[4]
Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing.

Sci Rep. 2018-10-19

[5]
H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes.

IEEE Trans Med Imaging. 2018-6-11

[6]
Family of boundary overlap metrics for the evaluation of medical image segmentation.

J Med Imaging (Bellingham). 2018-1

[7]
Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs.

Artif Intell Med. 2017-3-27

[8]
Automatic 3D liver location and segmentation via convolutional neural network and graph cut.

Int J Comput Assist Radiol Surg. 2017-2

[9]
Tumor burden analysis on computed tomography by automated liver and tumor segmentation.

IEEE Trans Med Imaging. 2012-8-7

[10]
Comparison and evaluation of methods for liver segmentation from CT datasets.

IEEE Trans Med Imaging. 2009-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索