Suppr超能文献

基于双注意力机制的CT图像3D U-Net肝脏分割算法

Dual Attention-Based 3D U-Net Liver Segmentation Algorithm on CT Images.

作者信息

Zhang Benyue, Qiu Shi, Liang Ting

机构信息

Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100408, China.

出版信息

Bioengineering (Basel). 2024 Jul 20;11(7):737. doi: 10.3390/bioengineering11070737.

Abstract

The liver is a vital organ in the human body, and CT images can intuitively display its morphology. Physicians rely on liver CT images to observe its anatomical structure and areas of pathology, providing evidence for clinical diagnosis and treatment planning. To assist physicians in making accurate judgments, artificial intelligence techniques are adopted. Addressing the limitations of existing methods in liver CT image segmentation, such as weak contextual analysis and semantic information loss, we propose a novel Dual Attention-Based 3D U-Net liver segmentation algorithm on CT images. The innovations of our approach are summarized as follows: (1) We improve the 3D U-Net network by introducing residual connections to better capture multi-scale information and alleviate semantic information loss. (2) We propose the DA-Block encoder structure to enhance feature extraction capability. (3) We introduce the CBAM module into skip connections to optimize feature transmission in the encoder, reducing semantic gaps and achieving accurate liver segmentation. To validate the effectiveness of the algorithm, experiments were conducted on the LiTS dataset. The results showed that the Dice coefficient and HD95 index for liver images were 92.56% and 28.09 mm, respectively, representing an improvement of 0.84% and a reduction of 2.45 mm compared to 3D Res-UNet.

摘要

肝脏是人体中的重要器官,CT图像能够直观地显示其形态。医生依靠肝脏CT图像来观察其解剖结构和病变区域,为临床诊断和治疗方案提供依据。为了协助医生做出准确判断,采用了人工智能技术。针对现有肝脏CT图像分割方法的局限性,如上下文分析能力弱和语义信息丢失等问题,我们提出了一种基于双注意力机制的CT图像三维U-Net肝脏分割算法。我们方法的创新点总结如下:(1)通过引入残差连接改进三维U-Net网络,以更好地捕捉多尺度信息并减轻语义信息丢失。(2)提出DA-Block编码器结构以增强特征提取能力。(3)将CBAM模块引入跳跃连接中,以优化编码器中的特征传递,减少语义差距并实现准确的肝脏分割。为验证该算法的有效性,在LiTS数据集上进行了实验。结果表明,肝脏图像的Dice系数和HD95指数分别为92.56%和28.09毫米,与三维Res-UNet相比,分别提高了0.84%和减少了2.45毫米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b23/11273630/27bfc80db4cd/bioengineering-11-00737-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验