National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile.
Biomolecules. 2021 Oct 15;11(10):1516. doi: 10.3390/biom11101516.
Yield is one of the most important agronomic traits for the breeding of rapeseed ( L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
产量是油菜( Brassica napus L.)育种的最重要农艺性状之一,但鉴于人口的快速增长,其高产形成的遗传解析仍然是一个谜。在本综述中,我们回顾了主要基因座在重要农艺性状中的发现以及复杂性状选择的最新进展。此外,我们讨论了油菜高通量技术在高分辨率遗传育种中的基准总结。双亲和连锁分析和关联作图已成为理解作物复杂农艺性状遗传结构的强大策略。改良作物品种的产生,特别是油菜,极大地促进了提高产量生产力。从这个意义上说,油菜的全基因组测序已经可以克隆和鉴定数量性状位点(QTLs)。此外,高通量测序和基因分型技术的产生极大地提高了 QTL 作图和全基因组关联研究(GWAS)方法的精度。此外,本研究首次尝试鉴定与产量相关性状的新 QTL,特别是关注每荚胚珠数(ON)。我们还强调了单基因座 GWAS(SL-GWAS)和多基因座 GWAS(ML-GWAS)的最新突破,旨在提高 GWAS 对复杂性状的潜在和稳健控制。