Suppr超能文献

基于深度图谱网络的超声心动图左心室高效三维分割

Deep Atlas Network for Efficient 3D Left Ventricle Segmentation on Echocardiography.

机构信息

Biocomputing Research Center, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.

The Department of Medical Imaging, Western University, London, Canada; The Digital Imaging Group of London, London, ON N6A 3K7, Canada.

出版信息

Med Image Anal. 2020 Apr;61:101638. doi: 10.1016/j.media.2020.101638. Epub 2020 Jan 13.

Abstract

We proposed a novel efficient method for 3D left ventricle (LV) segmentation on echocardiography, which is important for cardiac disease diagnosis. The proposed method effectively overcame the 3D echocardiography's challenges: high dimensional data, complex anatomical environments, and limited annotation data. First, we proposed a deep atlas network, which integrated LV atlas into the deep learning framework to address the 3D LV segmentation problem on echocardiography for the first time, and improved the performance based on limited annotation data. Second, we proposed a novel information consistency constraint to enhance the model's performance from different levels simultaneously, and finally achieved effective optimization for 3D LV segmentation on complex anatomical environments. Finally, the proposed method was optimized in an end-to-end back propagation manner and it achieved high inference efficiency even with high dimensional data, which satisfies the efficiency requirement of clinical practice. The experiments proved that the proposed method achieved better segmentation results and a higher inference speed compared with state-of-the-art methods. The mean surface distance, mean hausdorff surface distance, and mean dice index were 1.52 mm, 5.6 mm and 0.97 respectively. What's more, the method is efficient and its inference time is 0.02s. The experimental results proved that the proposed method has a potential clinical application for 3D LV segmentation on echocardiography.

摘要

我们提出了一种新颖有效的方法,用于对超声心动图中的左心室(LV)进行 3D 分割,这对于心脏病诊断非常重要。所提出的方法有效地克服了 3D 超声心动图的挑战:高维数据、复杂的解剖环境和有限的注释数据。首先,我们提出了一个深度图谱网络,它将 LV 图谱集成到深度学习框架中,首次解决了超声心动图上的 3D LV 分割问题,并基于有限的注释数据提高了性能。其次,我们提出了一种新颖的信息一致性约束,从不同层面同时增强模型的性能,最终实现了对复杂解剖环境中 3D LV 分割的有效优化。最后,所提出的方法以端到端反向传播的方式进行优化,即使在高维数据的情况下也能实现高推断效率,满足临床实践的效率要求。实验证明,与最先进的方法相比,所提出的方法在分割结果和推断速度上都有了更好的表现。平均表面距离、平均 Hausdorff 表面距离和平均骰子指数分别为 1.52mm、5.6mm 和 0.97。更重要的是,该方法具有高效性,其推断时间为 0.02s。实验结果证明,该方法在超声心动图上进行 3D LV 分割具有潜在的临床应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验